

BSCLIB

Multi-Platform Bisync Developer’s Tool Kit

Programmer's Guide

Serengeti Systems Incorporated

Copyright (c) 1988-2002 Serengeti Systems Incorporated

- All Rights Reserved -

Printed in the USA

August 19, 2002

DISCLAIMER

BSCLIB is sold as is. Serengeti Systems Incorporated (Serengeti) makes no
representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties for a particular purpose.

Serengeti shall have no liability for loss or damage caused or alleged to be
caused directly or indirectly by this computer program, including but not
limited to interruption of service, loss of business or anticipatory profits or
consequential damages resulting from the use of this program.

Further, Serengeti reserves the right to revise this publication and program
from time to time without notice.

ATTRIBUTION CLAUSES

3780Link, BSCLIB, SyncPCI, and SmartSync/DCP are trademarks of Serengeti Systems
Incorporated.
Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation.
IBM, AIX, and RS/6000 are trademarks or registered trademarks of International Business
Machines Corporation.
Unix is a registered trademark of Unix Systems Laboratory.
Solaris is a trademark of Sun Microsystems, Inc.
Other brand and product names are trademarks or registered trademarks of their respective
holders.

 i

Table of Contents

SECTION PAGE

1 Introduction..1
1.1 BACKGROUND...1
1.2 BSCLIB FEATURES ...2
1.3 BSCLIB HARDWARE OPTIONS..3
1.3.1 Single-Port SyncPCI.. 3
1.3.2 Multi-Port SyncPCI.. 4
1.3.3 Single-Port AutoSync... 4
1.3.4 Multi-Port SmartSync/DCP.. 4
1.3.5 3780 vs. 2780 Point-to-Point Emulation.. 5
1.3.6 Multi-Point Emulation... 5
2 Application Structure ...6
2.1 SINGLE-PORT SYNCPCI BSCLIB APPLICATIONS...........................6
2.2 MULTI-PORT SYNCPCI BSCLIB APPLICATIONS............................6
2.3 SINGLE-PORT AUTOSYNC BSCLIB APPLICATIONS.......................9
2.4 MULTI-PORT SMART SYNC/DCP BSCLIB APPLICATIONS..........12
2.5 THE "LAYERS" OF BSCLIB..15
2.5.1 Application Program and API..15
2.5.2 Record Manager (RM) Layer...15
2.5.3 BSC Protocol Manager (BPM) Layer...17
2.5.4 BSCLIB Device Drivers...17
3 BSCLIB Programming ...18
3.1 AWLTEST -- BSCAWL SAMPLE APPLICATION..........................19
3.2 BSCAWL FUNCTIONS (IN ALPHABETICAL ORDER).....................19
3.3 BSCAWL FUNCTIONS BY BAPI OPCODE22
3.4 BSCAWL FUNCTION DEFINITIONS...25
3.5 BSCAWL CALLBACK FUNCTIONS..45
3.6 BSCAWL “.INI” FILE DEFINITIONS..47
4 Low-Level BAPI Programming50
4.1 CTEST -- BAPI SAMPLE APPLICATION..51
4.2 BSCLIB CONTROL BLOCK (BCB)..52
4.2.1 BSCLIB Control Block (BCB) Definitions...................................54
4.2.2 Return Codes...57
4.2.3 Blocking vs. Non-Blocking BAPI Calls...58
4.2.4 Record-Oriented Interface..59
4.3 POINT -TO-POINT VS. MULTI-POINT OPERATION...........................59
4.4 BSCLIB API (BAPI) COMMANDS ..60
4.4.1 Opcode 0 − INITIALIZE Command ..60
4.4.2 Opcode 1 − INSTALL Command ...65

ii

4.4.3 Opcode 2 − OPEN Command...66
4.4.4 Opcode 3 − READ Command...71
4.4.5 Opcode 4 − WRITE Command...83
4.4.6 Opcode 5 − ABORT Command ..92
4.4.7 Opcode 6 − STATUS Command...93
4.4.8 Opcode 7 − STATISTICS Command ...94
4.4.9 Opcode 8 − TRACE Command...95
4.4.10 Opcode 9 − CLOSE Command...98
4.4.11 Opcode 10 − UNINSTALL Command...100
4.4.12 Opcode 12 − HARDWARE Command ..100
5 Configuring BSCLIB ..109
Appendix A. BSCLIB Return Codes.......................................118
Appendix B. BSCLIB Link State Codes..................................123
Appendix C. Statistics Parameter Block (SPB)124
Appendix D. KILLBSC – Terminate EMUBSC......................132
Appendix E. EMUBSC – BSC Protocol Handler Process........133
Appendix F. DCPLOAD – Load Process on DCP135
Appendix G. DCPPEEK − DCP Process Status136
Appendix H. DCPDUMP − Dump DCP Debug.......................138
Appendix I. DCPDEBUG − DCP Debug139
Appendix J. DCPTRACE − DCP Trace Dump.......................141
Appendix K. XRESET – Reset SyncPCI Device Driver..........143
INDEX..144

 iii

Table of Figures

SECTION PAGE

Figure 1. Windows SyncPCI BSCLIB Application..7
Figure 2. Unix SyncPCI BSCLIB Application..8
Figure 3. Windows AutoSync BSCLIB Application..10
Figure 4. Unix AutoSync BSCLIB Application..11
Figure 5. Windows DCP BSCLIB Application...13
Figure 6. Unix DCP BSCLIB Application ...14
Figure 7. BCB Structure ..53
Figure 8. PIB Structure ..62
Figure 9. PIB Structure ... 110
Figure 10. SPB Structure for Point-to-Point Mode.. 125
Figure 11. SPB Structure for Multi-Point Mode (Control Station) 126
Figure 12. SPB Structure for Multi-Point Mode (Tributary Station).......... 127

 1

1 INTRODUCTION
BSCLIB is a software tool kit for emulating the point-to-point and multi-
point Binary Synchronous Communications (BSC) protocol. BSCLIB
provides an Applications Program Interface (API) that supports a variety of
programming languages, operating systems, and communications hardware.

The API interface provides a straightforward means of controlling
information flow between your program and a BSC communications link. It
allows a user to create a custom application that seamlessly integrates BSC
communications.

Typical BSCLIB applications include Electronic Data Interchange (EDI),
host-to-terminal links, point-of-sale (POS) systems, automatic funds
transfer, insurance claims processing, remote data collection, and many
other batch file-transfer applications. Any application that interfaces with a
BSC network and requires tight integration of local and remote systems is a
candidate for BSCLIB.

The BSCLIB API allows an application program to transfer information as
it is needed or in batches. A properly designed BSCLIB application
seamlessly integrates data communications with its other functions. The
entire communications session can occur transparently to the application's
end-user.

BSCLIB gives the developer a consistent BSC interface for a variety of
operating systems and communications adapters. BSCLIB applications can
connect to remote systems that support Binary Synchronous
Communications as defined in the IBM publication, General Information −
Binary Synchronous Communications (IBM Order No. GA27-3004).

1.1 Background
The Binary Synchronous Communications protocol has been in use since
the 1960s. Although the IBM publication noted in the preceding section is
the definitive authority on BSC, even it leaves some issues unaddressed.
Over the years, many developers have used BSC in varying ways to achieve
a wide variety of goals.

For many developers, BSCLIB can be used with less than a full
understanding of the binary synchronous protocol. However, the BSC
protocol does involve many concepts, and it would be difficult to say that
anybody can develop a BSC application with absolutely NO protocol

BSCLIB

2

knowledge. How much any developer may need to learn will be a function
of complexity of their application.

This manual may refer to unfamiliar BSC concepts. Do not think you need
to understand all of them. BSCLIB provides far more options and far more
capability than the average application will ever require. For most
developers, the best way to use this manual will be as an adjunct to the code
samples provided with BSCLIB, rather than as a tutorial for cover-to-cover
reading. This guide attempts to explain a few concepts, but is more focused
on the development of BSCLIB applications than the in-depth details of the
BSC protocol.

From our experience, we suggest you read the first two sections carefully, to
gain a good overview of the product. Next, skim Sections 3, 4 and
especially 5, configuring BSCLIB. Armed with that understanding, you can
return to Sections 3 and 4 for a more in-depth examination to determine
whether you can make use of the high-level BSCLIB Wrapper Library
(BSCAWL) or whether you need to get "down and dirty" with BSCLIB's
Low Level Interface Functions.

Serengeti’s technical support is available to assist you with detailed
questions on how to make the best use of BSCLIB. They are also available
to assis t in the actual design and development of your application for a fee.
They are NOT available to teach the bisync protocol. If you do require more
understanding of BSC than you receive from this manual and this product,
you should consult the IBM publication and other resources.

1.2 BSCLIB Features

 • Applications Interface Features
 - support for C, C++, Visual Basic, and Java applications
 - auto-dial and auto-answer support for a variety of modems
 - integrated line trace for line monitoring
 - configurable ASCII↔EBCDIC translation tables
 - blocking and non-blocking I/O
 - real-time session statistics
 - support for receiving “uni-directional” or “simplex” data feeds

 • Standard BSC Protocol Features
 - 2780/3780 point-to-point emulation
 - multi-point link emulation (see below)
 - Vertical Forms Control (VFC) recognition

 Programmer’s Guide

 3

 - device select recognition
 - space compression/expansion (3780 only)
 - space truncation (2780 only)
 - WACK, RVI and TTD support
 - EBCDIC New Line (NL) character recognition
 - transparent text mode
 - terminal identification
 - transmit and receive double buffering
 - CRC-16 block checking
 - ASCII data link control characters
 - LRC block checking for ASCII data link control
 - SOH headed blocks (inbound and outbound)
 - sending and receiving limited conversational replies
 - auto-detection of incoming 2780 or 3780 data streams

 • NON-Standard BSC Protocol Features
 - binary file mode
 - optional stripping of VFC and device select sequences
 - variable communications buffer sizes up to 4192 bytes
 - optional suppression of inbound and outbound inter-record
 separators

 • Multi-Point BSC Protocol Features
 - support for both control and tributary stations
 - recognition of multiple select addresses
 - automatic poll or select recognition

1.3 BSCLIB Hardware Options

BSCLIB supports connections through a single-port synchronous adapter,
an external AutoSync modem or an intelligent multi-port synchronous
adapter. Only one type of device can be used on a system at a time,
however, up to four multiple single -port or six multi-port adapters can be
installed on a single system.

1.3.1 Single-Port SyncPCI

The single-port SyncPCI version of BSCLIB supports one BSC connection.
The connection is achieved with the installation of a Serengeti Systems

BSCLIB

4

SyncPCI synchronous communications adapter. The SyncPCI adapter
supports a wide variety of dial-up and leased-line telephone connections, as
well as connections to FRADs, CSU/DSUs, and modem eliminators that use
and RS-232 interface.

1.3.2 Multi-Port SyncPCI

Multi-port capability may be achieved with the installation of up to four
SyncPCI single-port adapters. Using multiple SyncPCI adapters is a low
cost way to provide up to four connections on a single system.

1.3.3 Single-Port AutoSync

The single-port AutoSync version of BSCLIB supports one BSC
connection. The connection is achieved via a standard asynchronous serial
port and an AutoSync capable modem. The AutoSync functionality is
supported by the Hayes Optima Business Modems manufactured by Zoom
Telephonics. An AutoSync connection is limited to dial-up telephone lines
only.

AutoSync is a feature of the Optima modems that permits synchronous
communications to occur between the modem and the remote system while
the local connection between the PC and modem is asynchronous. As such,
the AutoSync version of BSCLIB uses a COM port on Windows systems or
a TTY port on Unix systems.

1.3.4 Multi-Port SmartSync/DCP

Multi-port capability may also be achieved with the 8-port SmartSync/DCP
communications co-processor adapter. The SmartSync/DCP version of
BSCLIB supports up six adapters, providing up to 48 simultaneous BSC
connections from a single system. The SmartSync/DCP adapter support a
wide variety of dial-up and leased-line telephone connections, as well as
connections to FRADs, CSU/DSUs, and modem eliminators.

The SmartSync/DCP adapter offers the following advantages over multiple
SyncPCI adapters:

• Only requires a single PCI slot to provide eight BSC connections
• Supports up to six adapters totaling 48 simultaneous BSC links
• Offloads BSC emulation processing from main CPU

To support multiple ports, you write a BSCLIB application that controls a
single-port and execute a separate instance of the application for each port

 Programmer’s Guide

 5

required (the AWLTEST and CTEST example programs work this way.)
Another method for supporting multiple ports is to write a single program
that services each port in sequence or by a priority scheme appropriate for
your application.

1.3.5 3780 vs. 2780 Point-to-Point Emulation

BSCLIB supports the 3780 and 2780 variants of the BSC protocol. BSCLIB
can auto-detect if incoming data is in 3780 or 2780 format during the first re
receive operation. It can than configure itself to operate in that mode for the
duration of the session. BSCLIB can also be to only operate in 3780 or 2780
mode.

1.3.6 Multi-Point Emulation

BSCLIB supports both point-to-point BSC emulation, typically used by
3780 and 2780 RJE data terminals, as well the mult i-point (not to be
confused with BSCLIB multi-port), also known as multi-drop, variant of the
BSC protocol. BSC 3270 terminals are connected in a multi-point
environment.

Typically, point-to-point and multi-point BSC environments are mutually
exclusive and you will not create an application that supports both. In fact,
multi-point BSC environments are extremely rare.

BSCLIB

6

2 APPLICATION STRUCTURE
BSCLIB is available for Microsoft Windows (98 / ME / NT / 2000 / XP)
and several Unix operating systems including x86 Linux, Sparc Solaris, and
AIX.

Not all versions of BSCLIB are supported on all operating systems. For an
up-to-date list of supported platforms, contact Serengeti Systems.

The BSCLIB API is nearly the same across all supported operating systems.
Applications can be ported from one supported system to another with
relative ease. The following sections provide an overview of how BSCLIB
operates in different environments.

2.1 Single-Port SyncPCI BSCLIB Applications
Single -port BSCLIB applications that use the SyncPCI synchronous adapter
consist of two separate programs. The application program, which you will
write, links with the library portion of BSCLIB, presents the user interface,
reads and writes files, creates log files, etc. It communicates, via a shared
memory segment, with the second program, a background process (often
referred to as a daemon process in Unix) that implements the BSC protocol.

The background process, emubsc , is referred to as the BSC Protocol
Handler. It is loaded automatically by BSCLIB and automatically
terminated when the communication session is complete.

The SyncPCI device driver is also required by BSCLIB, but your program
will not interface directly with it. The structure of a Windows and Unix
single-port BSCLIB applications are shown in the following diagrams.

2.2 Multi-Port SyncPCI BSCLIB Applications

Multi-port BSCLIB applications that use two, three, or four SyncPCI
adapters are simply replications of the single-port application described
previously. For each SyncPCI adapter installed, the complete set of
processes described for a single-port SyncPCI application, are replicated.

 Programmer’s Guide

 7

Figure 1. Windows SyncPCI BSCLIB Application

(RS-232C
interface)

(hardware PCI
bus interface)

(shared memory
interface)

Record Manager

BSC Protocol Handler

Application Program

Executable File

'emubsc.exe'

BSCLIB
Application Interface

(API function call)

System kernel

SyncPCI Adapter

Comm Link

SyncPCI Device Driver

 'rmlib.dll'

BSCLIB

8

Figure 2. Unix SyncPCI BSCLIB Application

(RS-232C
Interface)

(hardware PCI
bus interface)

(shared memory
interface)

Record Manager

BSC Protocol Handler

Application Program

Executable File

'emubsc'

(API function
call)

System kernel

SyncPCI Adapter

Comm Link

SyncPCI Device Driver

(linked to
libbsc.a)

BSCLIB
Application Interface

 Programmer’s Guide

 9

2.3 Single-Port AutoSync BSCLIB Applications
AutoSync BSCLIB applications consist of three separate programs. The
first program is your application. This program, which is linked with the
library portion of BSCLIB, presents the user interface, reads and writes
files, creates log files, etc. The application program communicates, via a
shared memory segment, with two background processes (often referred to
as a daemon process in Unix) that implement the BSC protocol.

The first background process, emubsc , is referred to as the BSC Protocol
Handler. It is started automatically by BSCLIB and automatically
terminated when the communication session is complete.

The second background process, abscdrvr, handles AutoSync functions
and is also automatically started by BSCLIB and then terminated when the
communication session is complete.

No additional device drivers are required with the AutoSync version of
BSCLIB.

The structure of a Windows and Unix AutoSync BSCLIB application are
shown in the following diagrams.

BSCLIB

10

Figure 3. Windows AutoSync BSCLIB Application

(via Hayes Optima
modem)

(API function call)

Record Manager

Application Program

Executable File

BSCLIB
Application Interface

 'rmlib.dll'

(hardware I/O
bus interface)

(shared memory interface)

BSC Protocol Handler

'emubsc.exe'

Windows COM Port

Comm Link

(shared memory interface)

AutoSync Modem Handler

'abscdrvr.exe'

 Programmer’s Guide

 11

Figure 4. Unix AutoSync BSCLIB Application

(via external Hayes
Optima modem)

(hardware I/O
bus interface)

(shared memory interface)

BSC Protocol Handler

'emubsc'

Serial Port

Comm Link

(shared memory interface)

AutoSync Modem
Handler

'abscdrvr'

Record Manager

Application Program

Executable File

(API function
call)

(linked to
libbsc.a)

BSCLIB
Application Interface

BSCLIB

12

2.4 Multi-Port SmartSync/DCP BSCLIB Applications
Multi-port applications that use the SmartSync/DCP adapter can have up to
48 ports. All BSC protocol tasks are downloaded to the adapter and run
using the board’s co-processor. The program that is downloaded to control
all eight ports on the adapter is named amxbsc.bin. The dcpload
program is used to initialize the board and must be run prior to starting your
BSCLIB application. See Appendix for more information on dcpload.

The XDCP device driver must be installed in your system to enable access
to the SmartSync/DCP adapter.

The structure of a Windows and Unix SmartSync/DCP BSCLIB
applications are show in the following diagrams.

BSCLIB supports up to six SmartSync/DCP adapters in a single system.
Your application can seamlessly address a given port on any board.

 Programmer’s Guide

 13

Figure 5. Windows DCP BSCLIB Application

…

(hardware I/O
bus interface)

BSC Protocol Processes

DCP Hardware

Comm Links

(system I/O calls)

XDCP Device Driver

System kernel

(RS-232C
interfaces)

(API function call)

Record Manager

Application Program

Executable File

BSCLIB
Application Interface

 'rmlib.dll'

BSCLIB

14

Figure 6. Unix DCP BSCLIB Application

…

(hardware I/O bus
interface)

BSC Protocol Processes

DCP Hardware

Comm Links

(system I/O calls)

XDCP Device Driver

System kernel

(RS-232C
interfaces)

Record Manager

Application Program

Executable File

(API function
call)

(linked to
libdcp.a)

BSCLIB
Application Interface

 Programmer’s Guide

 15

2.5 The "Layers" of BSCLIB
We have just addressed the variations among BSCLIB linked modules
across different operating systems and communications interfaces. From a
conceptual perspective, however, every BSCLIB application can be viewed
"top-down" as a number of layers:

1. Application program
2. BSCLIB API Wrapper Library (BSCAWL)
3. Low-Level BSCLIB API (BAPI)
4. Record Manager (RM) Layer
5. BSC Protocol Manager (BPM) Layer
6. BSC Device Drivers

2.5.1 Application Program and API

A BSCLIB application program may be written in any programming
language capable of issuing an external call to a Windows DLL or linking to
Unix library. Languages most commonly used are C, C++, Visual Basic,
and Java. The application program is linked to one or both of BSCLIB’s
two APIs.

The BSCLIB API Wrapper Library (BSCAWL) is a high-level API that
provides a variety of functions necessary to implement the BSC protocol.
Chapter 3 provides a detailed description of BSCAWL. BSCAWL is built
on top of the BSCLIB API (BAPI), which is a low-level API. Use of BAPI
requires the application to do bit-level manipulation of data structures,
however, BAPI does provides certain low-level functions that are not
available in BSCAWL. Chapter 4 provides a detailed description of BAPI.

2.5.2 Record Manager (RM) Layer

The Record Manager (RM) layer oversees the transfer of logical records
between your program's buffers and the buffers used to exchange data with
the communications link. For BAPI applications the program’s buffer is
specified in the BSCLIB Control Block (BCB). When overseeing this
process, the RM manages the various options requested by your program.

When receiving, the RM waits for a communications buffer to be received.
When a block is available and a request from your program is received,
logical records are transferred one at a time until the block is empty. Before
a logical record is handed to the application interface, compressed spaces (if
any) are expanded and an EBCDIC to ASCII translation is performed (if
these options are enabled.)

BSCLIB

16

Inbound logical records are either delimited by inter-record separators and
end-of-block characters, as defined by the BSC protocol, or fixed length.
Your program may disable BSCLIB's recognition of one or more of these
delimiters resulting in physical record I/O.

Also, printer and punch device selection and Vertical Forms Control (VFC)
sequences may be passed through to your program, translated to CR/LF or
LF equivalents, or stripped from the data stream based on your program's
requests. Your program is responsible for recognizing and acting upon
these sequences if they are passed through.

When transmitting, the RM accepts logical records from the application
interface, performs space compression and an ASCII to EBCDIC translation
(if enabled.) The logical records are placed in a comm buffer for
transmission. Your program has record-by-record control over outbound
record blocking using the following options:

• Fill communications buffer and continue
• End communications buffer with ETB and continue
• End communications buffer with ETX and continue
• End communications buffer with ETX, then transmit an EOT, which

terminates the transmission

On both transmit and receive, EBCDIC transparency enables BSC line
control characters, such as ETX and EOT, to be transferred as data. Your
program may enable and disable outbound transparency, but inbound
transparency is detected and handled automatically.

The Binary I/O option is a special case of EBCDIC transparency that
disables ASCII↔EBCDIC character translation. This mode is useful for
transferring files containing characters that do not have EBCDIC
equivalents, such as “.EXE” and “.COM” files (executable files.) This
mode is not always supported by mainframe computers, but is a feature of
most 3780/2780 terminal emulation products.

If your program needs to manipulate non-transparent inbound and outbound
data streams directly using the EBCDIC character set, BSCLIB supports an
option that disables ASCII↔EBCDIC translation entirely. BSCLIB
assumes the data stream to be in EBCDIC.

BSCLIB may also be configured for ASCII data link control, in which all
data link control characters and data are using the ASCII character set.
BSCLIB supports odd parity or no parity in ASCII data link control mode.

 Programmer’s Guide

 17

2.5.3 BSC Protocol Manager (BPM) Layer

The BSC Protocol Manager (BPM) Layer controls the establishment and
termination of a communications session, and the sending and receiving of
communications buffers during the session.

In single-port and AutoSync versions of BSCLIB, the BPM layer is a
separate process that is loaded by RM layer and communicates via shared
memory. In multi-port SmartSync/DCP environments, the BPM layer is
downloaded and run on the board. The different implementations of the
BPM layer have no affect on your application program.

A BSCLIB application programmer is generally not concerned with the
operations of the BPM layer. But, it may be helpful to understand that the
BPM layer is driven by events on the communications link and by requests
from the RM layer that are in turn generated by I/O requests from your
application program.

The BPM layer handles BSC protocol functions such as bidding for the line
to establish a session, Cyclical Redundancy Check (CRC-16) verification of
comm buffers, Temporary Text Delay (TTD) and Wait Acknowledgment
(WACK) flow control, even/odd comm buffer sequencing, etc.

2.5.4 BSCLIB Device Drivers

BSCLIB is shipped with a device driver that corresponds to the
communications adapter you selected when ordering. Both the SyncPCI and
SmartSync/DCP adapters are plug-and-play adapters that do not require any
hardware configuration prior to installation. When BSCLIB is used with an
AutoSync modem, BSCLIB does not install a separate driver, but it does
utilize the default serial device driver provided with the operating system.

BSCLIB

18

3 BSCLIB PROGRAMMING
The BSCLIB API Wrapper Library (BSCAWL) is a high-level interface
built on top of the low-level BSCLIB API (BAPI). Under Windows,
BSCAWL is a DLL with both a C language interface and C++ Class Library
interface. Any language that can access standard Windows DLLs, such as
Visual Basic and Java, can utilize BSCAWL. Under Unix, BSCAWL is
static library file.

Not all of the capabilities of BAPI are available through BSCAWL
functions, most notably some of the multi-point capabilities and
unidirectional receive functionality. A special BSCAWL function,
BSCIssueAPICall, allows the developer to access all BAPI capabilities. To
learn more about BAPI, refer to Chapter 4.

BSCAWL is multi-threaded and is written in C. The Pthreads library is
utilized in the Unix environment. BSCAWL provides callback functionality
for languages that support callbacks. A callback function is used to notify an
application program that a requested BSCLIB operation has completed. For
languages that do not support callbacks, BSCAWL calls are blocking so a
multi-threaded application design is recommended. All BSCAWL calls are
thread-safe.

BSCAWL is provided "as is". Complete source code, including API header
files, is provided in the bscawl subdirectory. Users are authorized to
modify the source code for their needs; however, Serengeti Systems will not
be responsible for BSCAWL functionality once any modifications have
been made.

Unix BSCAWL applications need to link the libbscawl.a static library and
either libbsc.a for AutoSync and SyncPCI applications or libdcp.a for
SmartSync/DCP applications. To link these libraries to your application,
add the -lbscawl option and either -lbsc or -ldcp to your link command.
BSCLIB libraries are installed in the system library directory, usually
/usr/lib.

Windows BSCAWL applications need to link to bscawl.dll. In addition,
bscawl.dll will load rmlib.dll and either xbsc.dll or xdcpdrvr.dll,
depending on the communication adapter being used.

 Programmer’s Guide

 19

3.1 AWLTEST -- BSCAWL Sample Application
An example application, awltest , and its complete C source code are
provided with the BSCLIB Software Development Kit. The source code is
located in the samples/awltest subdirectory under the installation
directory. This program exercises most of the capabilities of BSCAWL.

For Unix development, a make file, Makefile, is provided to compile and
link the program. This make file demonstrates the correct compiler and link
options to use when developing a program that uses BSCLIB. To build the
sample program, simply run make from the samples/awltest
subdirectory.

For Windows development, project files compatible with Microsoft Visual
Studio 6 are provided to compile and build various versions of the program.
The project file is located in the samples/awltest subdirectory.

The resulting program is useful as both a demonstration and test program
for BSCLIB in a point-to-point (contention mode) BSC environment.
(Compiler switches allow you to build a version that is for multi-point BSC
environments, as well.) You can exercise virtually all of BSCLIB's
functionality from menus and prompts within the program. The BSCLIB
result codes are displayed immediately after a function returns. This
program is a valuable learning aid for new BSCLIB programmers.

3.2 BSCAWL Functions (in Alphabetical Order)
BSCAbort Abort pending OPEN, READ, WRITE

operation.
BSCAnswer Put modem into auto-answer mode, and

answer incoming call.
BSCClearReceivedTerminalID Reset any saved terminal ID received.

BSCClearStatistics Zero out contents of current SPB.

BSCClose Close communications session. (i.e. drop
the connection)

BSCConnect Raise DTR in anticipation of
establishing a connection.

BSCCreateHandle Get BSCAWL handle to a new
BSCAWL context (must be first call
made to BSCAWL).

BSCDial Dial modem to establish a connection.

BSCGetATAnswerString Get the currently configured AT modem
auto-answer initialization string.

BSCLIB

20

BSCGetATInitString Get current AT modem initialization
command string.

BSCGetHardwareType Get type of Serengeti hardware installed

BSCGetNumDCPBoard In SmartSync/DCP environments, Get
number of boards installed.

BSCGetParms Get pointer to current PIB.

BSCGetStatistics Get contents of current SPB.

BSCGetTranslationTable Get the current ASCII – EBCDIC
translation tables.

BSCHardwareCommand Issue BSCLIB hardware command call.

BSCInitialize Initialize BSCLIB configuration
parameters.

BSCInstall Install and start BSCLIB components.

BSCIsInstalled Get BSCLIB installation status.

BSCIsOpen Get BSCLIB line connection status.

BSCIssueAPICall Issue a BSCLIB API (BAPI) function
call.

BSCLoadSettings Read configuration parameters from
specified .ini file and save in PIB.

BSCRead Issue BSCLIB READ call.

BSCReadAddSelectAddressToList In multi-point mode, add an address to
select address list.

BSCReadGetFlags Get BCB flags from most recent READ
operation.

BSCReadGetTimeout Get READ BCB time-out set in the
current BSCAWL context.

BSCReadGetReceivedTerminalID Get a received terminal ID.

BSCReadGetSelectAddressList In multi-point mode, get multiple select
addresses currently defined.

BSCReadGetSelectedAddress In multi-point mode, get selected station
address.

BSCReadInitiateRVI Issue BSCLIB READ, and then issue
RVI, requesting a line turnaround.

BSCReadRemoveSelectAddress-
FromList

In multi-point mode, remove an address
from select address list.

BSCReadSetPollInteval In multi-point mode, set poll interval
when retry count is greater than one.

BSCReadStoreMultiPointAddress In multi-point mode, store single address
to be used with a READ command.

BSCReadStoreSelectAddressList In multi-point mode, store multiple
addresses to recognize when selected.

 Programmer’s Guide

 21

BSCReadToETX Issue BSCLIB READs until ETX
terminated block is received.

BSCReadUnidirectional Issue BSCLIB READ in “simplex” or
uni-direction mode.

BSCReceiveFile Receive a file.

BSCCloseHandle Stop/remove BSCLIB components.

BSCSaveSettings Save current configuration parameters to
specified .ini file.

BSCSendFile Send a file.

BSCSetBlockRespTimeout Set block response time-out.

BSCSetDTR Set DTR modem signal on or off.

BSCSetMaxBaudRate Set maximum DTE baud rate for
asynchronous modem dialing.

BSCStatus Issue BSCLIB STATUS call.

BSCStoreATAnswerString Set new AT modem command string to
enable auto answer.

BSCStoreATInitString Set new AT modem initialization
command string.

BSCStoreStatistics Store new values in current SPB.

BSCSetTerminalID Store optional terminal ID.

BSCTrace Turn BSCLIB tracing on and off.

BSCStoreTranslationTable Store new set of ASCII – EBCDIC
translation tables.

BSCWrite Issue BSCLIB WRITE call.

BSCWriteETB Issue BSCLIB WRITE call and end
block with ETB.

BSCWriteETX Issue BSCLIB WRITE call and end
block with ETX.

BSCWriteETXEOT Issue BSCLIB WRITE call, end block
with ETX, and send EOT.

BSCWriteGetFlags Get BCB flags from most recent WRITE
operation.

BSCWriteGetTimeout Get WRITE BCB time-out set in the
current BSCAWL context.

BSCWriteSendEOT Send an EOT.

BSCWriteSendForwardAbort Issue BSCLIB WRITE call and send a
forward to abort to cancel transmission.

BSCWriteSendLineTickle Transmit a line tickle (empty
transmission to signal still online).

BSCLIB

22

BSCWriteSetSelectInteval In multi-point mode, set select interval
when retry count is greater than one.

BSCWriteStoreMultiPointAddress In multi-point mode, store single address
to used with a WRITE command.

BSCUninstall Stop all BSCLIB processes and release
all BSCLIB resources.

3.3 BSCAWL Functions By BAPI Opcode

General Purpose
BSCIssueAPICall Make a BAPI call directly.

BSCReceiveFile Function to completely receive a file.

BSCSendFile Function to completely send a file.

Opcode 0 - INITIALIZE

BSCCreateHandle Get BSCAWL handle (must be first
call made to BSCAWL).

BSCInitialize Initialize BSCLIB configuration
parameters.

BSCGetTranslationTable Get pointer to current ASCII –
EBCDIC translation tables.

BSCLoadSettings Read configuration parameters from
specified .ini file and save in PIB.

BSCSaveSettings Write current configuration parameters
to specified .ini file.

BSCSetTerminal ID Store optional terminal ID.

BSCStoreTranslationTable Store new set of ASCII – EBCDIC
translation tables.

BSCClearReceivedTerminalID Reset any saved terminal ID received.

BSCGetParms Get pointer to current PIB.

Opcode 1 - INSTALL

BSCInstall Install/start BSCLIB components.

BSCIsInstalled Get BSCLIB installation status.

Opcode 2 - OPEN

BSCConnect Raise DTR in anticipation of
establishing a connection.

BSCAnswers Put modem into auto-answer mode,
and answer incoming call.

 Programmer’s Guide

 23

BSCDial Place an outgoing telephone call in to
establish a connection.

BSCIsOpen Get BSCLIB line connected status.

Opcode 3 - READ

BSCRead Issue BSCLIB READ call.

BSCReadInitiateRVI Issue BSCLIB READ, then issue RVI
requesting a line turnaround.

BSCReadToETX Issue BSCLIB READs until ETX
terminated block is received.

BSCReadUnidirectional Issue BSCLIB READ in “simplex” or
uni-direction mode.

BSCReadGetFlags Get READ BCB flags currently set in
the hBC context.

BSCReadGetTimeout Get READ BCB time-out currently set
in the hBC context.

BSCReadGetReceivedTerminalID Get a received terminal ID.

BSCReadGetSelectedAddress In multi-point mode, Get selected
station address.

BSCReadAddSelectAddressToList In multi-point mode, add an address to
select address list.

BSCReadRemoveSelectAddress-
FromList

In multi-point mode, remove an
address from select address list.

BSCReadStoreMultiPointAddress In multi-point mode, store single
address to be used with a READ
command.

BSCReadStoreSelectAddressList In multi-point mode, store multiple
addresses to recognize when selected.

BSCReadGetSelectAddressList In multi-point mode, get multiple
select addresses currently defined.

BSCReadSetPollInteval In multi-point mode, set poll interval
when retry count is greater than one.

Opcode 4 - WRITE

BSCWrite Issue BSCLIB WRITE call.

BSCWriteETB Issue BSCLIB WRITE call and end
block with ETB.

BSCWriteETX Issue BSCLIB WRITE call and end
block with ETX.

BSCWriteETXEOT Issue BSCLIB WRITE call, end block
with ETX, and send EOT.

BSCWriteGetFlags Get WRITE BCB flags currently set in
the hBC context.

BSCLIB

24

BSCWriteGetTimeout Get WRITE BCB time-out currently
set in the hBC context.

BSCWriteSendForwardAbort Issue BSCLIB WRITE call and send a
forward to abort to cancel
transmission.

BSCWriteSendLineTickle Transmit a line tickle (empty
transmission to signal still online).

BSCWriteSendEOT Send an EOT.

BSCWriteStoreMultiPointAddress In multi-point mode, store single
address to used with a WRITE
command.

BSCWriteSetSelectInteval In multi-point mode, set select interval
when retry count is greater than one.

Opcode 5 - ABORT

BSCAbort Abort pending OPEN, READ, WRITE
operation.

Opcode 6 - STATUS

BSCStatus Issue BSCLIB STATUS call.

Opcode 7 - STATISTICS

BSCGetStatistics Get contents of current SPB.

BSCStoreStatistics Store new values in current SPB.

BSCClearStatistics Zero out contents of current SPB.

Opcode 8 - TRACE

BSCTrace Turn BSCLIB tracing on and off.

Opcode 9 - CLOSE

BSCClose Close communications session.

Opcode 10 – UNINSTALL

BSCUninstall Stop all BSCLIB processes.

BSCCloseHandle Stop/remove BSCLIB components.

 Programmer’s Guide

 25

Opcode 12 – HARDWARE COMMANDS
BSCHardwareCommand Issue BSCLIB hardware command

call.
BSCGetHardwareType Get type of Serengeti hardware

installed.
BSCSetDTR Set DTR modem signal on or off.

BSCGetNumDCPBoard In SmartSync/DCP environments, Get
number of boards installed.

BSCSetBlockRespTimeout Set block response time-out.

BSCSetMaxBaudRate Set maximum DTE baud rate for
asynchronous modem dialing.

BSCGetATInitString Get current AT modem initialization
command string.

BSCGetATAnswerString Get the currently configured AT
modem auto-answer initialization
string.

BSCStoreATAnswerString Set new AT modem command string to
enable auto answer.

BSCStoreATInitString Set new AT modem initialization
command string.

3.4 BSCAWL Function Definitions

Refer to the ssitypes.h source module for definitions of the data types
(e.g., USHORT) used in the following function definitions.

Note 1: The flags arguments in the following functions are defined as
ULONG (a 32-bit value) and comprise both the BCB Flags and AuxFlags
parameters. Refer to the sample programs for details on how to use
BSCAWL flag arguments.

Note 2: While several of the following functions permit a callback function
to be provided whereby BSCAWL notifies your application when the
operation is complete, not all progra mming languages support the use of
callback functions (e.g., Visual Basic, Java). In the absence of a callback, all
calls into BSCAWL are blocking.

BSCAbort
Parameters: HBSC HBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 5

BSCLIB

26

Description: Aborts any pending OPEN, CLOSE, READ or WRITE command.

BSCAnswer
Parameters: HBSC HBC Pointer to BSC handle

 ULONG dwFlags OPEN flags as defined in BCB

 USHORT nTimeout Number of seconds to wait for
connection. If 0, wait indefinitely

 AWLPROC CallbackProc Callback function to notify when the
connection is made. If NULL, then
this will be a blocking call.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 2, Subopcode 1

Description: Puts modem into Auto Answer mode, raise the DTR signal, and wait for
the DSR signal from the modem, indicating that a connection with a
remote station has been established. Calls BSCInstall automatically, if not
already called.

BSCClearReceivedTerminalID
Parameters: HBSC hBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 0, Subopcode 10

Description: Clears the memory used to store a terminal ID, if one was received.

BSCClearStatistics
Parameters: HBSC HBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 7, Subopcode 0

Description: Zeros out BSCLIB’s internal statistics stored in Statistics Parameter Block
(SPB).

 Programmer’s Guide

 27

BSCClose
Parameters: HBSC hBC Pointer to BSC handle.

 ULONG dwFlags CLOSE flags as defined in BCB.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 9, Subopcode 0

Description: Closes the physical connection to the host, and ends the communications
session

BSCConnect
Parameters: HBSC hBC Pointer to BSC handle.

 ULONG dwFlags Open flags as defined in BCB.

 USHORT nTimeout Number of seconds to wait for DSR.
If 0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
connection is made. If NULL, then
this will be a blocking call.

 PVOID PCBParms Optional pointer to be passed back to
the callback function, to give it context
information to be used within the
callback.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 2, Subopcode 1

Description: Raises the DTR signal and wait for the DSR signal from the modem,
indicating that a connection with a remote station has been established.
Calls BSCInstall automatically, if not already called.

BSCCreateHandle
Parameters: n/a

Returns: HBSC Pointer to BSC handle.

BAPI Call: n/a

Description: This is the first call that an application using the library must make to the
library. The programmer then must call BSCLoadSettings to initialize
PIB configuration parameters or call BSCSaveSettings to create a default
PIB and .ini file.

BSCLIB

28

BSCDial
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR SzPhoneNumbe
r

The phone number to dial; if not
provided, the default number from the
.ini file is used.

 ULONG DwFlags Open flags as defined in BCB.

 USHORT NTimeout Number of seconds to wait for
connection. If 0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
connection is made. If NULL, then
block until complete.

 PVOID PCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 2, Subopcode 0

Description: Dials the modem and waits for a connection. Calls BSCInstall
automatically, if not already called.

BSCGetATAnswerString
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR szAnswerString Returned modem answer string.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 14

Description: Gets the currently configured AT modem auto-answer initialization string.

BSCGetATInitString
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR SzInitString Returned modem initialization string.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 12

Description: Get the currently configured AT modem initialization string.

 Programmer’s Guide

 29

BSCGetHardwareType
Parameters: HBSC hBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 0

Description: Returns the type of hardware installed.

BSCGetNumDCPBoards
Parameters: HBSC hBC Pointer to BSC handle.

Returns: Char The number of DCP boards detected in the system.

BAPI Call: Opcode 12, Subopcode 8

Description: Returns the number of DCP boards detected/installed in the system.

BSCGetParms
Parameters: HBSC hBC Pointer to BSC handle.

Returns: PPARMS A pointer to the Parameter Initialization Block (PIB)
referenced from the hBC context structure.

BAPI Call: n/a

Description: Gets a pointer to the Parameter Initialization Block (PIB) contained in the
hBC context structure. Your application should initialize the PIB by way of
this pointer prior to calling BSCInstall .

BSCGetStatistics
Parameters: HBSC HBC Pointer to BSC handle.

 PSTATS PStats Statistics structure to copy into.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 7, Subopcode 1

Description: Gets BSCLIB’s internal statistics and puts them in the passed in Statistics
Parameter Block (SPB).

BSCGetTranslationTable
Parameters: HBSC hBC Pointer to BSC handle.

 ULONG dwFlags BCB flags to select table.

BSCLIB

30

 PUCHAR pTable The buffer into which the requested
table will be copied.

Returns: USHORT The return code from the BSCLIB call

BAPI Call: Opcode 0, Subopcode 1

Description: Gets the ASCII to EBCDIC or EBCDIC to ASCII translation tables used
by BSCLIB to convert incoming and outgoing data.

BSCHardwareCommand
Parameters: HBSC hBC Pointer to BSC handle.

 UCHAR nSubopcode Hardware command subopcode.

 PUSHORT nParm Subopcode dependent argument.

 PCHAR szParm Subopcode dependent argument.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, user defined subopcode

Description: Issues a specified hardware command.

BSCInitialize
Parameters: HBSC hBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 0, Subopcode 0

Description: Restores the BSCLIB configuration parameters to those obtained in the
previous call to BSCSetupFromINI.

BSCInstall
Parameters: HBSC hBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 1, Subopcode 0

Description: Loads the BSC protocol handler and initializes shared memory. Calls
BSCInitialize automatically, if not already called.

 Programmer’s Guide

 31

BSCIsInstalled
Parameters: HBSC hBC Pointer to BSC handle.

Returns: BOOLEAN True (non-zero) if BSCLIB is currently installed.

BAPI Call: n/a

Description: Gets the status of BSCLIB. Returns TRUE between calls to BSCInstall
and BSCUninstall.

BSCIsOpen
Parameters: HBSC hBC Pointer to BSC handle.

Returns: BOOLEAN True (non-zero) if the line is connected (successful return
from BSCOpen, BSCAnswer, or BSCDial.

BAPI Call: n/a

Description: Gets the connection status of BSCLIB.

BSCIssueAPICall
Parameters: HBSC hBC Pointer to BSC handle.

 PBCB pBcb Pointer to a BCB structure.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Dependent on the BCB structure provided to the function.

Description: Issues a BAPI call.

BSCLoadSettings
Parameters: HBSC hBC Pointer t o BSC handle.

 PCHAR szIniFile BSCAWL .ini file.

 PCHAR szSection Optional section name to reference in
.ini file. If NULL, default section
[BSCLIB] is used. May be useful to
keep separate configurations for
multiple ports.

Returns: BOOLEAN TRUE if successfully read .ini file; FALSE if failed.

BAPI Call: n/a

BSCLIB

32

Description: Reads the values from the given ini file and assign them to the context
referenced by hBC. If the file does not exist, the function returns FALSE.
Lookup the BSCAWL .ini file for more information.

BSCRead
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pBuf Buffer to copy data into.

 USHORT nReadBytes Length of the provided buffer.

 PUSHORT pnBytesRead Pointer to where number of bytes
received is returned on blocking calls
(no callback function provided).

 PULONG pdwFlags Pointer to read flags as defined in
BCB (both input and output).

 USHORT nTimeout Number of seconds to wait for data. If
0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data is available. If NULL, then block
until data is read.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 0

Description: Reads incoming data.

BSCReadAddSelectAddressToList
Parameters: HBSC HBC Pointer to BSC handle.

 PUCHAR PBuf Buffer containing address as a NULL
terminated string.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 22

Description: In multi-point mode, stores single address to recognize when selected.

BSCReadGetFlags
Parameters: HBSC HBC Pointer to BSC handle.

 Programmer’s Guide

 33

Returns: ULONG The current value for READ flags.

BAPI Call: n/a

Description: Gets the READ flags currently set in the BSC context. This is useful for
applications that cannot access the contents of the hBC context.

BSCReadGetTimeout
Parameters: HBSC hBC Pointer to BSC handle.

Returns: USHORT The current value for READ time-out.

BAPI Call: n/a

Description: Gets the READ time-out currently set in the BSC context. This is useful
for applications that cannot access the contents of the hBC context.

BSCReadGetReceivedTerminalID
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR PBuf Buffer to copy ID into.

 PUSHORT pnBytesRead Pointer to number of bytes stored in
buffer.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 10

Description: Gets received Terminal ID. pBuf must point to a buffer sufficiently large
to accept the maximum Terminal ID length of 20 bytes.

BSCReadGetSelectAddressList
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR Pbuf Buffer to save a NULL terminated list
of NULL terminated strings.

 USHORT Nlen Length of buffer provided.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: n/a

Description: In multi-point mode, gets the current select address list.

BSCLIB

34

BSCReadGetSelectedAddress
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR PBuf Buffer to copy address into.

 PUSHORT pnBytesRead Pointer to number of bytes stored in
buffer.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 11

Description: Gets Selected Station Address. pBuf must point to a buffer sufficiently
large to accept the maximum Address length of 20 bytes.

BSCReadInitiateRVI
Parameters: HBSC HBC Pointer to BSC handle.

 PUCHAR Pbuf Buffer to copy data into.

 USHORT NReadBytes Length of the provided buffer.

 PUSHORT PnBytesRead Pointer to number of bytes read into
buffer.

 PULONG PdwFlags Pointer to READ flags as defined in
BCB (both input and output).

 USHORT NTimeout Number of seconds to wait for data. If
0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data is available. If NULL, then block
until complete.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 1

Description: Reads pending data, then issues an RVI requesting control of the line.

BSCReadRemoveSelectAddressFrom
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pBuf Buffer containing address as a NULL
terminated string.

Returns: USHORT The return code from the BSCLIB call.

 Programmer’s Guide

 35

BAPI Call: Opcode 3, Subopcode 23

Description: In multi-point mode, removes an address from select address list.

BSCReadSetPollInterval
Parameters: HBSC HBC Pointer to BSC handle.

 USHORT NTimeout Number of seconds to wait between
sending polls in multi-point mode
when configured as control station..

Returns: n/a

BAPI Call: n/a

Description: In multi-point mode, sets poll interval when retry count is greater than one.
The interval is the period of time BSCLIB waits if a poll is refused or
ignored before another is sent.

BSCReadStoreMultiPointAddress
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR pAddress Buffer containing address as a NULL
terminated string.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 20

Description: In multi-point mode, stores single address to recognize when selected
(when a tributary station) or address to poll (when a control station). When
a tributary station, calling this function overrides any address(es) set with
the BSCReadStoreSelectAddressList function.

BSCReadStore SelectAddressList
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR PBuf Buffer containing addresses as a
NULL terminated list of NULL
terminated strings.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 21

Description: In multi-point mode, stores multiple addresses to recognize when selected.
Calling this function overrides any address set with the
BSCReadStoreMultiPointAddress function.

BSCLIB

36

BSCReadToETX
Parameters: HBSC HBC Pointer to BSC handle.

 PUCHAR PBuf Buffer to copy data into.

 USHORT nReadBytes Length of the provided buffer.

 PUSHORT pnBytesRead Pointer to where number of bytes
received is returned on blocking calls
(no callback function provided).

 PULONG PdwFlags Pointer to READ flags as defined in
BCB (both input and output).

 USHORT NTimeout Number of seconds to wait for data. If
0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data is available. If NULL, then block
until data is read.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 3, Subopcode 4

Description: Performs standard READs until an ETX is received, at which point the
application should begin writing data. Used in a conversational reply.

BSCReadUnidirectional
Parameters: HBSC hBC Pointer to BSC handle

 PUCHAR pBuf Buffer to copy data into.

 USHORT nReadBytes Length of the provided buffer.

 PUSHORT pnBytesRead Pointer to number of bytes read into
buffer.

 PULONG pdwFlags Pointer to READ flags as defined in
BCB (both input and output).

 USHORT nTimeout Number of seconds to wait for data. If
0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data is available. If NULL, then block
until data is read.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

 Programmer’s Guide

 37

BAPI Call: Opcode 3, Subopcode 3

Description: Performs “uni-directional” or “simplex” receives.

BSCReceiveFile
Parameters: HBSC hBC Pointer to BSC handle.

 PCHAR szFileName Name of file to write receive data to.

 ULONG dwFlags READ flags as defined in BCB.

 IOPROC CallbackProc Callback function to notify when the
receive file is complete. May be
NULL if notification is not required.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Multiple

Description: Receives a file.

BSCCloseHandle
Parameters: HBSC hBC Pointer to BSC handle.

Returns: n/a

BAPI Call: n/a

Description: Releases the resources allocated by BSCLIB. This should be the last
BSCAWL call.

BSCSaveSettings
Parameters: HBSC hBC Pointer to BSC handle.

 PCHAR szIniFile BSCAWL .ini file.

 PCHAR szSection Optional section name to reference in
.ini file. If NULL, default section
[BSCLIB] is used. May be useful to
keep separate configurations for
multiple ports.

Returns: BOOLEAN TRUE if successfully read .ini file; FALSE if failed.

BSCLIB

38

BAPI Call: n/a

Description: Writes the configuration values pointed by the hBC handle to the specified
file. If no file name is specified, the function returns FALSE. If the
specified .ini file does not exist, the function creates a file with all default
values. See Paragraph 3.5 for more information on the contents of the
BSCAWL .ini file.

BSCSendFile
Parameters: HBSC hBC Pointer to BSC handle.

 PCHAR szFileName Name of file to send.

 ULONG dwFlags WRITE flags as defined in BCB.

 IOPROC CallbackProc Callback function to notify when the
send file is complete. May be NULL if
notification is not required.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Multiple

Description: Sends a file.

BSCSetBlockRespTimeout
Parameters: HBSC hBC Pointer to BSC handle.

 USHORT nValue Time-out value in seconds.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 9

Description: Sets the block response time-out. This is the time BSCLIB waits for a
block response before sending an ENQ or other appropriate action.

BSCSetDTR
Parameters: HBSC hBC Pointer to BSC handle.

 BOOLEAN bState 0=off, 1=on.

Returns: USHORT The return code from the BSCLIB call.

 Programmer’s Guide

 39

BAPI Call: Opcode 12, Subopcode 4, Subopcode 5

Description: Raises or lowers DTR modem signal.

BSCSetMaxBaudRate
Parameters: HBSC hBC Pointer to BSC handle.

 USHORT nValue 12=1200 bps; 24=2400 bps; 48=4800
bps; 96=9600 bps; 19=19200 bps;
38=38,400 bps

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 10

Description: Set maximum DTE baud rate for asynchronous modem dialing.

BSCSetTerminalID
Parameters: HBSC hBC Pointer to BSC handle.

 PCHAR pID Buffer containing the desired terminal
ID (up to 20 characters).

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: n/a

Description: Sets the terminal ID used in point-to-point connections.

BSCStatus
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pActiveOpcode Pointer to currently active Opcode

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 6

Description: Retrieves the status of a pending OPEN, ABORT, or WRITE command.

BSCStoreATAnswerString
Parameters: HBSC hBC Pointer to BSC handle.

 PCHAR szAnswerString Modem answer string to set.

BSCLIB

40

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 15

Description: Sets the AT modem answer initialization string.

BSCStoreATInitString
Parameters: HBSC hBC Pointer to BSC handle.

 PCHAR szInitString Modem initialization string to set.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 12, Subopcode 13

Description: Sets the AT modem initialization string.

BSCStoreStatistics
Parameters: HBSC hBC Pointer to BSC handle.

 PSTATS pStats Statistics structure to store.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 7, Subopcode 0

Description: Sets BSCLIB’s internal statistics from the passed in Statistics Parameter
Block (SP B).

BSCStoreTranslationTable
Parameters: HBSC hBC Pointer to BSC handle.

 ULONG dwFlags BCB flags to select table.

 PUCHAR pTable The buffer from which the supplied
table will be copied.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 0, Subopcode 2

Description: Stores the ASCII to EBCDIC or EBCDIC to ASCII translation tables used
by BSCLIB to convert incoming and outgoing data.

 Programmer’s Guide

 41

BSCTrace
Parameters: HBSC hBC Pointer to BSC handle.

 BOOLEAN bTraceON Whether to start or stop the trace.

 PCHAR szTraceFile Path of trace file to use.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 8, various subopcodes

Description: Depending on the value of bTraceON, BSCTrace either starts tracing to
szTraceFile or stops the active trace.

BSCWrite
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pBuf Buffer to send.

 USHORT nBytesToWrite Number of bytes to send.

 PUSHORT pnBytesWritten Pointer t o where number of bytes sent
is returned on blocking calls (no
callback function provided).

 PULONG pdwFlags Point to WRITE flags as defined in
BCB (both input and output).

 USHORT nTimeout Number of seconds to wait for data to
be transmitted. If 0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data has been sent. If NULL, then
block until complete.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 4, Subopcode 0

Description: Adds the data as a record in the current transmit buffer (block).

BSCWriteETB
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pBuf Buffer to send.

 USHORT nBytesToWrite Number of bytes to send.

BSCLIB

42

 PUSHORT pnBytesWritten Pointer to where number of bytes sent
is returned on blocking calls (no
callback function provided).

 PULONG pdwFlags Point to WRITE flags as defined in
BCB (both input and output).

 USHORT nTimeout Number of seconds to wait for data to
be transmitted. If 0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data has been sent. If NULL, then
block until complete.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 4, Subopcode 1

Description: Adds the data as a record in the current transmit buffer then sends the
buffer as an ETB terminated block.

BSCWriteETX
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pBuf Buffer to send.

 USHORT nBytesToWrite Number of bytes to send.

 PUSHORT pnBytesWritten Pointer to where number of bytes sent
is returned on blocking calls (no
callback function provided).

 PULONG pdwFlags Point to WRITE flags as defined in
BCB (both input and output).

 USHORT nTimeout Number of seconds to wait for data to
be transmitted. If 0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data has been sent. If NULL, then
block until complete.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call

BAPI Call: Opcode 4, Subopcode 2

Description: Adds the data as a record in the current transmit buffer then sends the
buffer as an ETX terminated block.

 Programmer’s Guide

 43

BSCWriteETXEOT
Parameters: HBSC hBC Pointer to BSC handle.

 PUCHAR pBuf Buffer to send.

 USHORT nBytesToWrite Number of bytes to send.

 PUSHORT pnBytesWritten Pointer to where number of bytes sent
is returned on blocking calls (no
callback function provided).

 PULONG pdwFlags Point to WRITE flags as defined in
BCB (both input and output).

 USHORT nTimeout Number of seconds to wait for data to
be transmitted. If 0, wait indefinitely.

 AWLPROC CallbackProc Callback function to notify when the
data has been sent. If NULL, then
block until complete.

 PVOID pCBParms Optional pointer to be passed back to
the callback, to give it context
information to be used within the
callback function. Set to NULL if not
used.

Returns: USHORT The return code from the BSCLIB call

BAPI Call: Opcode 4, Subopcode 3

Description: Adds the data as a record in the current transmit buffer then sends the
buffer as an ETX terminat ed block followed by an EOT. This call will
terminate the WRITE operation upon completion. BSCWriteETXEOT
must be called once to terminate a WRITE.

BSCWriteGetFlags
Parameters: HBSC hBC Pointer to BSC handle.

Returns: ULONG The current value for WRITE flags.

BAPI Call: n/a

Description: Gets the WRITE flags currently set in the BSC context. This is useful for
applications that cannot access the contents of the hBC context.

BSCWriteGetTimeout
Parameters: HBSC hBC Pointer to BSC handle.

Returns: USHORT The current value for WRITE time-out.

BAPI Call: n/a

Description: Gets the WRITE time-out currently set in the BSC context. This is useful
for applications that cannot access the contents of the hBC context.

BSCLIB

44

BSCWriteSendEOT
Parameters: HBSC hBC Pointer to BSC handle.

 ULONG dwFlags Write flags as defined in BCB.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 4, Subopcode 11

Description: Transmit an EOT.

BSCWriteSendForwardAbort
Parameters: HBSC hBC Pointer to BSC handle.

 ULONG dwFlags Write flags as defined in BCB.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 4, Subopcode 4

Description: Issues WRITE call and send forward abort to cancel transmission.

BSCWriteSendLineTickle
Parameters: HBSC HBC Pointer to BSC handle.

 ULONG dwFlags Write flags as defined in BCB.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 4, Subopcode 10

Description: Sends a “line tickle” which is an empty transmission to indicate to the
remote that the BSCLIB application is connected and alive.

BSCWriteSetSelectInterval
Parameters: HBSC hBC Pointer to BSC handle.

 USHORT nTimeout Number of seconds to wait between
sending selects in multi-point mode
when configured as control station..

Returns: n/a

BAPI Call: n/a

 Programmer’s Guide

 45

Description: In multi-point mode, sets select interval when retry count is greater than
one. The interval is the period of time BSCLIB waits if a select is refused
or ignored before another is sent.

BSCWriteStoreMultiPointAddress
Parameters: HBSC HBC Pointer to BSC handle.

 PCHAR pAddress Buffer containing address as a NULL
terminated string.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 4, Subopcode 20

Description: In multi-point mode, stores single address to select (when a control station)
or a poll address (when a tributary station).

BSCUninstall
Parameters: HBSC HBC Pointer to BSC handle.

Returns: USHORT The return code from the BSCLIB call.

BAPI Call: Opcode 10

Description: Stops all BSCLIB processes. This should always be the last BSCAWL
function called by your application.

3.5 BSCAWL Callback Functions

When non-blocking calls are made to the BSCLIB API Wrapper Library
(AWL) on opens, reads, or writes, a callback function mechanism is
provided to enable BSCAWL to notify the application of events. All
callback functions pass back the same arguments, but not all are used on
every call. The four fundamental callback functions are described below.

Note: Not all programming languages support the use of callback
functions.

IOCallbackProc
Parameters: USHORT nErrorCode BSCLIB return code.

 PVOID pCBParms Pointer to callback parameters
structure supplied to the originating
call to the BSCSendFile, or
BSCReceiveFile function.

Returns: void

Description: Optional user defined callback function called when a BSCSendFile or
BSCReceiveFile function completes.

BSCLIB

46

OpenCallbackProc
Parameters: HBSC hBC Pointer to BSC handle.

 USHORT nErrorCode BSCLIB return code.

 ULONG dwFlags BCB flags returned from BSCLIB.

 USHORT nCount (not used)

 void * pBuffer (not used)

 PVOID pCBParms Pointer to callback parameters
structure supplied to the originating
call to the BSCConnect, BSCDial,
or BSCAnswer function.

Returns: void

Description: User defined callback function called when a BSCConnect, BSCDial , or
BSCAnswer function completes.

ReadCallbackProc
Parameters: HBSC hBC Pointer to BSC handle.

 USHORT nErrorCode BSCLIB return code.

 ULONG dwFlags BCB flags returned from BSCLIB.

 USHORT nCount Number of bytes in pBuffer.

 PUCHAR pBuffer Pointer to buffer contained read data.

 PVOID pCBParms Pointer to callback parameters
structure supplied to the originating
call to the BSCRead function.

Returns: void

Description: User defined callback function called when a the BSCRead function
returns data, an error occurs, or the function completes.

WriteCallbackProc
Parameters: HBSC hBC Pointer to BSC handle.

 USHORT nErrorCode BSCLIB return code.

 ULONG dwFlags BCB flags returned from BSCLIB.

 Programmer’s Guide

 47

 USHORT nCount Number of bytes written.

 void * pBuffer (not used)

 PVOID pCBParms Pointer to callback parameters
structure supplied to the originating
call to the BSCWrite function.

Returns: void

Description: User defined callback function called when a the BSCWrite function
need more data, an error occurs, or the function completes.

See the bscawl_defs.h source module for the definition of the PVOID
structure.

3.6 BSCAWL “.ini” File Definitions
BSCAWL is configured by way of an “.ini” file. This file is manipulated
using the BSCSaveSettings and BSCLoadSettings functions or may be
modified manually as required. The following parameters are under a
default section entitled [BSCLIB].

The section names are user definable and may be used to maintain separate
configuration settings for multiple environments and/or multiple ports. For
example, multiple port configurations could be maintained under titles such
as [Port 1], [Port 2], etc.

The use of the BSCAWL “.ini” file is optional. If you wish to set the
parameters in the BSC context directly without the use of the file, you may
do so.

Value Default Description
OpenTimeout

20 Default time-out used on BSCOpen
function calls (expressed in seconds).
“0” is an infinite time-out.

ReadWriteTimeout 20 Default time-out used on BSCRead and
BSCWrite function calls (expressed in
seconds). “0” is an infinite time-out.

AutoDialNumber - Default phone number to use in
BSCDial function .

AutoAnswer No Enables auto answer mode on
BSCOpen function.

Emulation 3780 Select “2780” or “3780” protocol
emulation when sending data. (The
protocol is automatically detected and
handled when receiving.)

StationType Primary Select “Primary” or “Secondary” station
type.

BSCLIB

48

ModemType Other Select default modem type. Choices are
“UDS”, “SADL”, “AT Command Set”,
“V25bis”, or “Other”.

LineType Switched Select “Switched” or “Leased” line
type.

Duplex Full Select “Full” or “Half” duplex.

MaxAsyncBaudRate 96 Set the default value for use with the
BSCSetMaxBaudRate function.

MaxXmtBufrSize 512 Set the maximum transmit buffer size.
Values up to 4096 are permitted.

MaxRcvBufrSize 520 Set the maximum receive buffer size.
Values up to 4096 are permitted.

RdrRecSize 512 Set maximum reader record size.
Values up to MaxXmtBufrSize are
permitted.

PtrRecSize 512 Set maximum printer record size.
Values up to MaxRcvBufrSize are
permitted.

PunRecSize 80 Set maximum punch record size. Values
up to MaxRcvBufrSize are permitted.

RecsBlk 0 Set maximum reader records per
transmission block. “0” means insert as
many that fit.

NoActivityTimeout 0 Set the no activity time-out (expressed
in seconds). “0” is an infinite time-out.

BidRetryLimit 15 Set the bid retry limit. “0” results in an
infinite number of retries.

EnqRetryLimit 6 Set the ENQ retry limit. “0” results in
an infinite number of retries.

NakRetryLimit 6 Set the NAK retry limit. “0” results in
an infinite number of retries.

TerminalID - Specify up to 20 characters for a default
terminal ID.

XmtTransparentMode No Set default transmission mode to be
EBCDIC transparent.

XmtBinaryMode No Set default transmission mode to be
binary transparent.

XmtCompressSpaces No Set default transmission mode to
compress spaces (in 3780 mode); to
truncate spaces (in 2780 mode).

XmtSuppressTranslation No Set default transmission mode to
suppress ASCII to EBCDIC translation.

XmtSuppressIRS No Set default transmission mode to
suppress transmission of IRS record
separators.

XmtTimeout 20 Default time-out used on BSCWrite
function calls (expressed in seconds).
“0” is an infinite time-out.

RcvBinaryMode No Set default reception mode to be binary
transparent.

RcvExpandSpaces Yes Set default reception mode to expand
compressed spaces (in 3780 mode).

 Programmer’s Guide

 49

RcvSuppressVFConETBETX No Set default reception mode to ignore
VFC found immediately before an end-
of-block control character.

RcvDecodeVFC Yes Set default reception mode to recognize
VFC sequences.

RcvStripVFC Yes Set default reception mode to strip
unrecognized VFC sequences.

RcvSuppressTranslation No Set default reception mode to suppress
EBCDIC to ASCII translation.

RcvRecognizeNL No Set default reception mode to recognize
EBCDIC NL (NewLine) character.

RcvSuppressIRSIUS No Set default reception mode to suppress
recognition of IRS/IUS record
separators.

RcvAbortPrevention No Enable/disable abort prevention mode
when calling the BSCRead function

RcvTimeout 20 Default time-out used on BSCRead
function calls (expressed in seconds).
“0” is an infinite time-out.

SleepPeriod 10 Set internal delay time-out value
(expressed in milliseconds). This value
should not be changed except at the
suggestion of a Serengeti Systems
support engineer.

MutexFailsafeTimeout 10 Set internal delay time-out value
(expressed in milliseconds). This value
should not be changed except at the
suggestion of a Serengeti Systems
support engineer.

PollAddress - In multi-point mode, the default poll
address.

SelectAddress - In multi-point mode, the default select
address.

TraceBufferSize 32,000 Set trace buffer size for non-
SmartSync/DCP environments.

Debug No Enable/disable BSCAWL debug log
file.

DebugFileName - Specify the BSCAWL debug log file
name.

BSCLIB

50

4 LOW-LEVEL BAPI PROGRAMMING
In addition to BSCAWL, BSCLIB provides a low-level API referred to as
BAPI (BSCLIB API). Use of BAPI requires bit-level manipulation of data
structures to perform BSCLIB functions and generally requires more code
to achieve the same results as BSCAWL functions. On the other hand, BAPI
provides access to certain BSCLIB capabilities that BSCAWL does not,
such as multi-point capabilities and unidirectional receive functionality.

Commands and data are passed between your program and BAPI via a data
structure called the BSC Control Block (BCB). Your program calls BAPI
with a properly configured BCB to perform the following functions:

• initialize configuration
• install the driver
• issue auto-dial modem commands
• issue modem setup commands
• open communications
• enable receive and read inbound records
• enable transmit and write outbound records
• abort I/O
• check I/O status
• initialize or read statistics
• control line trace
• close communications
• uninstall the driver

Typically, your program opens the communications link, reads and writes
data records as required, then closes the link. Except for error processing
such as recovering from an abnormal line disconnect, your program does
not need to be concerned with the details of the BSC protocol and how the
information is physically transferred.

BAPI provides a single entry point through which your program controls
and accesses the BSC communications link. Calls into BAPI pass
information via the BSC Control Block (BCB) structure. Your program
passes a command, sub-command (function), and optional parameters to
BSCLIB each time a BSCLIB operation is to be performed. The command,
function, and its optional parameters are inserted into the BCB before
issuing the subroutine call that transfers control to BSCLIB.

BAPI copies the BCB to local storage, then decodes the opcode byte in the
BCB to determine which operation to perform. The specified operation is

 Programmer’s Guide

 51

performed by the appropriate record manager routine. When the operation
is complete, control is returned to the application interface, the local BCB is
copied back to your program's BCB and control returns to your program.

The BAPI entry point function is bscllif. The following C code sample
shows how BSCLIB may be called:

 #define OPEN 2
 extern void bscllif (struct bcb *);
 extern struct bcb_type bcb;

 bcb.opcode = OPEN;
 bscllif(&bcb);

Unix BAPI applications need to link the static library, libbsc.a, installed in
/usr/lib. Applications using the SmartSync/DCP board use libdcp.a
instead. To link these libraries, add the -lbsc or -ldcp option to your link
command.

Windows BAPI applications will need to link to rmlib.dll using the
rmlib.lib export library. In addition, rmlib.dll will load either xbsc.dll or
xdcpdrvr.dll, depending on the communication adapter being used.

4.1 CTEST -- BAPI Sample Application

A BAPI sample application, ctest, and its complete C source code are
provided with the BSCLIB Software Development Kit. This program
exercises most of the BAPI functions. Source code is located in the
samples/ctest subdirectory under the install directory.

For Unix development, a make file, Makefile, is provided to compile and
link the program. This make file demonstrates the correct compiler and link
options to use when developing a program that uses BSCLIB. To build the
sample program, simply run make from the samples/ctest subdirectory.

For Windows development, project files compatible with Microsoft Visual
Studio 6 are provided to compile and build various versions of the program.
The project file is located in the samples/ctest subdirectory.

The resulting program is useful as both a demonstration and test program
for BSCLIB in a point-to-point or contention mode BSC environment.
(Compiler switches allow you to build a version that is for multi-point BSC
environments, as well.) You can exercise virtually all of BSCLIB's
functionality from menus and prompts within the program. All inputs to the

BSCLIB

52

BAPI are displayed before each call and the BSCLIB result codes are
displayed immediately after a call returns. This program is a valuable
learning aid for new BSCLIB programmers who elect to use BAPI.

For applications using the SmartSync/DCP adapter, the following command
line options apply:

-b board Board number [1-6] (SmartSync/DCP only)

The -b switch specifies the SmartSync/DCP adapter, if more than one is
installed. You must indicate the board number, 1 through 6, as appropriate.
Each boards number corresponds to the order it was configured. If omitted,
the default is board 1.

-p port Port number [1-8]

The -p switch specifies the port to access. If omitted, the default is port 1.

4.2 BSCLIB Control Block (BCB)

Below is a diagram of BSCLIB Control Block (BCB) data layout. The
following section provides detailed explanation of each field and its options.

 Programmer’s Guide

 53

Figure 7. BCB Structure

IMPORTANT

BSCLIB expects the member alignment of this structure (and
all BSCLIB structures) to be 8 bytes. Be sure to set your
compiler this way or the structure you define in your
application may not align with what BSCLIB expects.

 Byte Field
Offset Description

Aux Flags/Shared Mem ID

Raw Value Trace Flags

32-Bit Buffer Address

0 Opcode

2 Subopcode State/Type

18

Tail (-1 = FFFFh) 24

Parms/Write/Read Value

Write/Read Count 12

Time-out 14

16

Flags 4

6

Return Code

8

10

20 Byte #1 Byte #2

22 Port Board

BSCLIB

54

4.2.1 BSCLIB Control Block (BCB) Definitions

The opcodes, subopcodes, and flags passed via the BCB are described
below:

 Opcode Command Subopcode Function Description

 0 INITIALIZE 0 Store Parameters
 1 Read Translation Table
 2 Store Translation Table
 10 Clear Received Terminal ID
 1 INSTALL - Install BSCLIB
 2 OPEN 0 Dial Modem
 1 Open Communications
 3 READ 0 Standard
 1 Abort Read
 2 Initiate RVI
 3 Uni-Directional Standard Read
 4 Read To ETX Block (For Sending

 Conversational Replies)
 10 Get Received Terminal ID
 11 Get Selected Station Address

20 Store Multi-Point Poll/Select
 Address
21 Store Multiple Select Address List

 22 Add Select Address To List
 23 Remove Select Address From List
 4 WRITE 0 Standard
 1 Send ETB Block
 2 Send ETX Block
 3 Send ETX Block and EOT
 4 Send Forward Abort
 10 Send Line Tickle
 11 Send EOT

20 Store Multi-Point Poll/Select
 Address

 5 ABORT -
 6 STATUS -

 Programmer’s Guide

 55

 Opcode Command Subopcode Function Description

 7 STATISTICS 0 Initialize SPB

1 Read SPB
10 Set ‘TTDs Sent’ field in SPB to

count TTDs received
11 Reset ‘TTDs Sent’ field in SPB to

count TTDs transmitted
 8 TRACE 0 Initialize
 1 Start
 2 Stop
 3 Read Queue
 4 Reset
 9 CLOSE 0 Standard
 1 Leave DTR On
 10 UNINSTALL -
 11 (Reserved) -
 12 HARDWARE 0 Return Hardware Type
 COMMANDS 1 Return Driver Serial Number
 4 Raise DTR Modem Signal
 5 Drop DTR Modem Signal
 8 Return Number of DCP Adapters
 9 Set Block Response Time -Out
 10 Set Maximum Async Baud Rate
 12 Get AT Dial Command String
 13 Store AT Dial Command String
 14 Get AT Answer Command String
 15 Store AT Answer Command String

16 Restore Default Command Strings
20 Enable Buffered Reads
21 Disable Buffered Reads
22 Set Select Response to NAK
23 Set Select Response to EOT
24 Set Select Response to WACK
30 Turn on BAPI debug loggiing
31 Turn off BAPI debug loggiing
32 Enable detailed BAPI logging
33 Disabled detailed BAPI logging
34 Set max BAPI debug log file size

BSCLIB

56

Flags Summary:

Bit 0 − Non-blocking I/O
Bit 1 − Enable EBCDIC Transparency (WRITE)

 Transparent Data Detected (READ)(*)
Bit 2 − Perform Binary I/O
Bit 3 − Skip Async Initialization
Bit 4 − Select Remote Punch (WRITE)

 Local Punch Selected (READ) (*)
Bit 5 − Compress Write/Expand Read Spaces
Bit 6 − Suppress VFC at ETB/ETX (READ)
Bit 7 − Leave IRS at ETB/ETX (WRITE)

 Decode VFC (READ)
Bit 8 − Strip VFC
Bit 9 − Record Truncated to Buffer Size (READ) (*)
Bit 10 - Record Truncated to Printer/Punch Size (READ) (*)
Bit 11 − Forced Close
Bit 12 − Suppress DLE-EOT (CLOSE)

 Suppress Block Responses (Uni-Directional READ)
Bit 13 − Table Select: ASCII or EBCDIC (INITIALIZE)

 Do Not Discard NAK'd Blocks (Uni-Directional READ)
 Enable Record Truncation When in 3780 Mode (WRITE)

Bit 14 − Ignore Record (WRITE)
 Block Acknowledgement Control (READ)

Bit 15 − Last Record Before ETX (READ) (*)
 Retransmit Block After NAK on ENQ (WRITE)

Auxiliary Flags Summary:

Bit 0 − Enable/Disable Printer
Bit 1 − Enable/Disable Punch
Bit 2 − Master Device Control
Bit 3 − Enable/Disable ASCII↔EBCDIC Translation
Bit 4 − Recognize EBCDIC New Lines
Bit 5 − Suppress IRS on Write
Bit 6 − Suppress IRS/IUS on Read
Bit 7 - Start Outbound Block With SOH (WRITE)
 Record Immediately Follows SOH (READ) (*)
Bit 8 − Residual Transmit Record Pending (*)
Bit 9 − Enable Pulse Dial (Auto-Dial OPEN)
 Monitor Ringing (Auto-Answer OPEN)
Bit 10 − Trial Open (OPEN)

Enable Automatic 3780/2780 Protocol Detection (READ)

 Programmer’s Guide

 57

Bit 11 − Ignore DSR (CLOSE)
 Conversational Reply Allowed (WRITE)

2780 Protocol Transmission Detected (READ)(*)
Bit 12 − Enable Auto-Answer / Manual Dial
Bit 13 - No Modem Reply Expected

 Last Record in Data Block Before ETB/ETX (READ)(*)
Bit 14 - Disable ABORT Receive Delay
Bit 15 - Disable ABORT if Receive Data is Present (READ)

 Leave DTR modem signal high (CLOSE)

(*) Note: Flags marked with (*) are set by BSCLIB and should be
interpreted by your program when BSCLIB returns control. If you wish to
use flags not marked, your program should set them prior to calling
BSCLIB.

All calls to BSCLIB share the following BCB fields. The descriptions of
BSCLIB command and functions that follow otherwise show only those
BCB fields that apply specifically to the particular operation.

Port/Adapter:
The port and adapter the call refers to. In single -port applications,
these fields should always be set to zero. In multi-port SyncPCI
applications, the port field should correspond to a valid SyncPCI
(one to four) port. In SmartSync/DCP applications, the port field
should correspond to a port on a given adapter and the adapter
should correspond to a valid SmartSync/DCP adapter (one to six).

Return Code:
See Appendix A for Return Codes and definitions.

4.2.2 Return Codes

Each BAPI function call returns a return code in byte 1 of the BCB. Specific
error or failure codes will vary for each function call, but a small number of
return codes are common to many functions.

For example:

 0 Successful completion
 255 (-1) Function still in progress

Depending on the need for robustness, a BSCLIB application can be written
to examine only a very small number of return codes, simply failing (with
an error message) if any other value is received. Or it can be written to

BSCLIB

58

attempt recovery from the widest range of potential return codes. Some of
the more commonly encountered return codes are described in this chapter
for the more complex and performance-critical commands: OPEN, READ
and WRITE. A complete list of Return codes is included in Appendix A.

4.2.3 Blocking vs. Non-Blocking BAPI Calls

Your program may issue two types of BAPI calls to BSCLIB: blocking and
non-blocking (referred to as execute and initiate I/O respectively in previous
versions of BSCLIB). The selection of one versus the other is determined
by the complexity of your program.

A blocking call performs its function entirely before return control to the
calling program, thus “blocking” the calling program during that time. A
non-blocking call returns control to the calling program immediately, but
continues to process in parallel with the calling program.

The choice of blocking or non-blocking, for any call for which it is
supported, is made in Bit 0 of the BCB Flags field (bytes 4 and 5).

0 = Blocking I/O
1 = Non-Blocking I/O

Non-blocking calls would add minimal benefit for simp le status checks
and/or configuration changes, and this bit flag is not applicable for many
BSCLIB opcodes. Five BAPI function calls (OPEN, CLOSE, READ,
WRITE and ABORT) can be issued as either blocking or non-blocking.
Non-blocking calls can provide significant performance improvement when
completion of the call may require time -consuming data transmission or be
delayed by the status of a modem or a program running in another
computer. Non-blocking calls are of particular benefit when this process or
another port could be making beneficial use of the time.

After a non-blocking call is issued, it will be the program's responsibility to
periodically test its status with a STATUS function call (or, in the case of a
READ function, with another READ). A return code of 255 (-1) indicates
that the call is still in processing. When it completes, you should receive
either a return code of 0, indicating successful completion, or some other
value, indicating a failure and its reason.

Non-blocking BAPI function calls are preferable in production applications
because a program is not suspended while waiting for BSCLIB operations
to complete.

 Programmer’s Guide

 59

4.2.4 Record-Oriented Interface
BSCLIB's READ and WRITE commands are record sequential. Reading
and writing to/from a BSC connection is analogous to performing file reads
and writes. Data is normally passed as logical records that could be equated
to a line from a video display, a record within a text file, or a print line.
This enables you to work with BSCLIB similarly to how you work with
other common I/O routines.

Both READ and WRITE can support physical record I/O as well. In this
mode, your program is responsible for the blocking and deblocking of
logical records within a communication buffer, which is passed between
your program and BSCLIB with a single call. This mode is useful for
sophisticated applications that require nonstandard data formats.

You will need to be familiar with the concept of "blocks" and "records" in
BSC communications in order to understand the descriptions of the READ
and WRITE functions. In BSC communications, a "block" of data is a
physical transmission that must be acknowledged (ACK) by its recipient
before another block will be transmitted.

A block is a data transfer “packet” begun and ended by one or two
characters special protocol characters. Blocks begin with a STX (or DLE
STX for transparent data) and end with ETB (or DLE ETB), which indicates
end of block, addit ional blocks follow, or with ETX (or DLE ETX), which
indicates end of text and end of file. When working with logical records, the
BSCLIB developer does not necessarily need to be aware of the physical
end of a block since BSCLIB detects and handles them appropriately.

A block contains one or more "logical records". Logical records may be
formatted in either of two ways: fixed length (as agreed upon by both the
sender and the recipient) or variable length (end of record is signaled by
another special character, inter-record separator, or IRS in 3780 mode or
IUS in 2780 mode). Again, when working with logical records, the
developer does not need to be aware of record separators since BSCLIB
handles them automatically based on values configured in the Parameter
Initialization Block (PIB) set by the INITIALIZE function call.

4.3 Point-to-Point vs. Multi-Point Operation

BSCLIB supports communications in either point-to-point or multi-point
mode. In multi-point mode, a further distinction is made between tributary
operation and control station mode.

BSCLIB

60

Point-to-point means this single station communicates via modem or
modem eliminator with one other station, whether in the next room or
across a long distance telephone line. There are no "identity"
considerations; the connection itself is the link that determines who the
parties to the conversation will be. Point-to-point connections are typically
what are used in Remote Job Entry (RJE) 2780 and 3780 terminal emulation
environments.

In multi-point communications, a single station, called the control station,
manages communications with anywhere from 1 to 32 other stations, called
tributary stations. The tributaries do not communicate with one another, but
only with the control station. This concept is also called a "master-slave"
relationship, in which the control station is the "master" and the tributaries
are the "slaves". In multi-point communications, data to or from any single
tributary is nonetheless physically transmitted to and seen by all of the
tributaries. Therefore, additional information is required in each
transmission to identify the tributary that is the source or intended
destination. Multi-point connections are typically used in 3270 display
station terminal emulation environments.

Point-to-point and multi-point BSC environments are mutually exclusive.
The vast majority of BSCLIB applications are of the point-to-point variety.

4.4 BSCLIB API (BAPI) Commands
The BAPI command set is described in the following subsections.

4.4.1 Opcode 0 − INITIALIZE Command

Prerequisite Calls:
None

Subopcodes:

0 − Store Parameter Initialization Block (PIB)
1 − Read Translation Table
2 − Store Translation Table
10 − Clear Received Terminal ID

Input BCB Fields:
Byte 0 Opcode
Byte 2 Subopcode
Byte 4,5 Flags
Byte 6-9 32-Bit Buffer Address

 Programmer’s Guide

 61

Byte 10,11 Buffer Size
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code

4.4.1.1 Subopcode 0 − Store PIB

The Parameter Information Block (PIB) is a structure containing BSCLIB
configuration parameters. Its layout is shown in the figure below and
described in detail in the next section.

The Store PIB function of the INITIALIZE command is used to change the
BSCLIB configuration Parameters. This function is typically made prior to
issuing an INSTALL command.

Not all configuration Parameters can be set once an INSTALL has been
performed. However, by setting Bit 14 of the PIB Flags, your program can
issue this function at any time to change record sizes, time-outs, and retry
limits (any Parameter in bytes 16-33.) The remaining Parameters take effect
only when this function is called with BSCLIB uninstalled.

Buffer Address:

The Buffer Address field of the BCB points to the PIB Structure.

Buffer Size:
Buffer Size field contains the size of the optional terminal ID string
that may be contained within the PIB.

BSCLIB

62

Figure 8. PIB Structure

 Byte Field
Offset Description

Records Per Block

ID byte #2 ID byte #1

(Reserved)

Modem Type

(Reserved) (Reserved)

Tail (-1 = FFFFh)

Reader Record Size

Printer Record Size

Punch Record Size

Transmit Block Size

(Reserved)

ID byte #19 ID Byte #20

0

2

18

24

12

14

16

4

6

8

10

20

22

Flags

(Reserved)

Receive Block Size

Bid Retry Limit

No Activity Time-out

Inter-Character Time-out

ENQ Retry Limit

NAK Retry Limit

34

54

28

30

32

26

52

 Programmer’s Guide

 63

Flags:

Bit # Function Bit = 0 Bit = 1
0 Emulation Mode 2780 3780
1 Station Type Secondary Primary
 (if Multi-Point) Tributary Control
2 Line Type Leased Switched
3 Terminal ID Disabled Enabled
4 Reserved
5 Duplex Half Full
6 Reserved
7 Auto DLE-EOT Read Disabled Enabled
8 Data Link Control EBCDIC ASCII
9 Redundancy Test CRC-16 LRC
10 Multi-Point Mode No Yes
11 Parity for ASCII DLC and

Multi-Point Mode
None Odd

12 Recognize Select on WRITE No Yes
14 Partial Update No Yes

Modem Types:

 1 − Motorola/UDS models 201C/D, 208B/D, 2140, or 2860
 2 − manual dial, other, or none
 3 − Racal-Vadic model 4850PA
 5 − AT-command auto-dial (e.g., Hayes Optima)
 8 − V.25bis auto-dial

4.4.1.2 Subopcode 1 − Read Translation Table
The Read Translation Table function of the INITIALIZE command is used
to read the ASCII to EBCDIC or EBCDIC to ASCII translation tables used
by BSCLIB to convert incoming and outgoing data. The translation table
may be read anytime except when a READ or WRITE command is active.

Flags:

Bit 13 − Table Select:

 0 = EBCDIC to ASCII
 1 = ASCII to EBCDIC

If Table Select = 1, BSCLIB copies the ASCII to EBCDIC table
into your program's buffer, otherwise the EBCDIC to ASCII table
is copied.

BSCLIB

64

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a 256-
byte buffer to which BSCLIB can copy the requested translation
table.

Buffer Size:

The value passed in the Buffer Size field of the BCB specifies the
size in bytes of the buffer pointed to by the Buffer Address field.
This value must be 256.

4.4.1.3 Subopcode 2 − Store Translation Table
The Store Translation Table function of the INITIALIZE command is used
to update the ASCII to EBCDIC or EBCDIC to ASCII translation tables
used by BSCLIB to convert incoming and outgoing data. The translation
table may be stored anytime that a READ or WRITE command is not
active.

Flags:

Bit 13 − Table Select:

 0 = EBCDIC to ASCII
 1 = ASCII to EBCDIC

If Table Select = 1, BSCLIB copies your program's buffer into the
ASCII to EBCDIC table, otherwise the EBCDIC to ASCII table is
updated.

Buffer Address:

The Buffer Address field of the BCB contains a pointer to a 256-
byte buffer from which BSCLIB can copy to the requested
translation table.

Buffer Size:
The value passed in the Buffer Size field of the BCB specifies the
size in bytes of the buffer pointed to by the Buffer Address field.
This value must be 256.

4.4.1.4 Subopcode 10 − Clear Received Terminal ID
The Clear Received Terminal ID function of the INITIALIZE command is
used to clear the memory used to save any terminal ID that may have been
received.

 Programmer’s Guide

 65

4.4.2 Opcode 1 − INSTALL Command

This command prepares installs and initializes BSCLIB.

Prerequisite Calls:
None

Input BCB Fields:
Byte 0 Opcode
Byte 4,5 Flags
Byte 6-9 32-Bit Buffer Address (Unix)
Byte 10,11 Buffer Size (Unix)
Byte 16,17 Shared Memory ID (Unix)
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:
Byte 1 Return Code

In single-port and multi-port applications using the SyncPCI adapter, this
command loads emubsc, the BSC protocol handler, and initializes shared
memory. In the Windows environments, BSCLIB expects to find emubsc
in the current directory or in one of the paths defined in the PATH
environment variable.

In the Unix environment, BSCLIB expects to find emubsc in the current
directory unless an alternate path is passed via the Buffer Address field of
the BCB.

In the multi-port version using the SmartSync/DCP adapter, this command
starts the corresponding BSC process running within the adapter.

This function must be called before calling the OPEN command.

Flags:

Bit 14 − Skip Async Initialization

 0 = No
 1 = Yes

When configured for AT-command set modems and Skip Async
Initialization = 1, BSCLIB does not initialize the communications
adapter during initialization. This is necessary if your application
has previously uninstalled BSCLIB while the line remained
connected (DTR left high) and you wish to re-establish the

BSCLIB

66

connection. Calling INSTALL otherwise causes the connection to
be lost.

Buffer Address:
In Unix environments, the Buffer Address field of the BCB may
contain a pointer to a buffer containing the fully qualified
pathname to where the emubsc program file is located. If set to 0,
the BSCLIB install directory, /usr/lib/bsclib (/usr/lpp/bsclib
on AIX), will be used.

Buffer Size:
In Unix environments, the value passed in the Buffer Size field of
the BCB specifies the size in bytes of the pathname pointed to by
the Buffer Address. For example:

 char *emubsc_path;

 emubsc_path = "/usr/local/MyApp";
 lbcb.bufr = emubsc_path;
 lbcb.val = strlen(emubsc_path);

Shared Memory ID:

In Unix environments, the value passed in the Shared Memory
field of the BCB specifies the shared memory ID to be used to
connect with emubsc , the daemon BSC protocol emulation
process. BSCLIB uses this identifier to locate and share
information with the emubsc process. If set to 0, the default ID,
hexadecimal value 311, is used.

4.4.3 Opcode 2 − OPEN Command
This command is used to establish a connection with another BSC station. A
connection may be established via auto-dial or auto-answer modems on
normal dial-up (POTS) telephone lines; direct connections via leased line
modems or synchronous modem eliminators; or network connections via
CSU/DSU or FRAD devices.

Prerequisite Calls:
INITIALIZE
INSTALL

Subopcodes:

0 − Dial Modem
1 − Open Communications

 Programmer’s Guide

 67

Input BCB Fields:

Byte 0 Opcode
Byte 2 Subopcode
Byte 4,5 Flags
Byte 6-9 32-Bit Buffer Address
Byte 10,11 Buffer Size
Byte 14, 15 Time -out
Byte 16, 17 Auxiliary Flags
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:
Byte 1 Return Code

4.4.3.1 Subopcode 0 − Dial Modem
When used with supported auto-dial modems, this function is used to send a
telephone number to the modem and to monitor for a successful or
unsuccessful connection.

Your program places the telephone number into a buffer pointed to by the
Buffer Address field and the length of the string into the Buffer Size field.

Flags:

Bit 0 − Non-blocking I/O:

 0 = No
 1 = Yes

If Non-blocking I/O = 0 then BSCLIB does not return control to
your program until the Dial Modem function completes. Setting the
flag = 1 instructs BSCLIB to return control immediately without
waiting for the dial to complete. In this case, your application
should issue STATUS calls periodically until the dial operation
completes.

Buffer Address:

The Buffer Address field of the BCB contains a pointer to a buffer
containing the telephone number and any command modifiers
supported by the target modem (i.e., wait for tone, pause five
seconds and continue, etc.)

BSCLIB

68

Buffer Size:
The value passed in the Buffer Size field of the BCB specifies the
size in bytes of the buffer pointed to by the Buffer Address.

Time -out:
The value passed in the Time-out field of the BCB specifies the
time in units of 100 millis econds (tenths of seconds) the dial
process will "keep trying", in the absence of successful completion
or specific failure, before returning a return code of 186 (Dialer
Time -out). Other failures such as 185 or 189 (Modem command
errors) or 181 (Busy signal detected) could also be returned if a
connection can not be established. Always establish a reasonable
non-zero interval for this parameter.

Auxiliary Flags:

Bit 9 − Pulse Dial (on Auto-Dial OPEN):

 0 = No
 1 = Yes

If Pulse Dial = 1 when performing a dial operation, BSCLIB adds
the appropriate command to the dial command string to enable
pulse (rather than tone) dialing on supported modems.

Bit 12 − Enable Manual Dial:

 0 = No
 1 = Yes

Enable Manual Dial = 1 facilitates a manual dial operation. The
net result of the option is to assert the DTR modem signal. The
connection to the remote system is established when the local
modem turns on the DSR modem signal.

Return Codes:
For blocking calls, return codes may be:

 0 Successful completion, connection established

Temporary failures, for which you may wish to wait and try again later:
 181 Busy signal
 183 No dial or answer back tone detected
 186 Dialer time-out, no connection established

Any other return codes may be regarded as a permanent failure, for
which you may need to change your program or your modem.

 Programmer’s Guide

 69

After non-blocking calls, you may receive any of the above, as
well as the following additional return codes, from a STATUS call:

255 In progress, no specific event
 180 In progress - ring detected*
 182 In progress - dial tone detected*
 184 In progress - answer back tone detected*
 187 Dial command aborted

* Codes 180, 182, 184 are not returned by all modems, and may be

considered equivalent to 255 if received.

4.4.3.2 Subopcode 1 − Open Communications
The Open Communications function of the OPEN command is used for all
connections other than auto-dialing modems. It instructs BSCLIB to raise
the control signal DTR and wait for the DSR signal to be returned from the
modem indicating that a connection with a remote station has been
established.

Flags:

Bit 0 − Non-blocking I/O:
 0 = No
 1 = Yes

If Non-blocking I/O = 0, then BSCLIB does not return control to
your program until the connection is established or the Time-out
expires. Setting the Non-blocking I/O flag = 1 instructs BSCLIB
to return control immediately without waiting for DSR. Return
Code 255 is returned indicating that the OPEN is in progress. See
the STATUS command for an explanation of how to check for
completion of the OPEN.

Auxiliary Flags:

Bit 9 − Monitor Ringing (on Auto-Answer OPEN):
 0 = No
 1 = Yes

If Monitor Ringing = 1 when performing an auto-answer operation
on AT command set modems, BSCLIB looks for ring indicator to
be returned from the modem prior to a connection. If a ring is
detected, a STATUS call (called to check for OPEN completion)
will return result code 180 once for each ring. This result code will
be randomly interspersed with 255 result codes until the OPEN
completes, so your application must allow for this.

BSCLIB

70

Your application may make note of this intermediate result code to
know that a connection is pending and to not issue an ABORT (or
take other action) that may disrupt an incoming call.

Bit 10 − Trial Open:
 0 = No
 1 = Yes

If Trial Open = 1, BSCLIB only checks to see if the DSR modem
signal is present on an OPEN command. A successful open is
indicated to the application program, but BSCLIB takes no action.

Bit 12 − Enable Auto-Answer:
 0 = No
 1 = Yes

This flag is valid only with an external AT command set modem
such as the Hayes Optima. When Enable Auto-Answer = 1,
BSCLIB sends the appropriate commands to the modem to enable
auto-answer mode. By default, the number of rings is set to 1. An
abort of the OPEN command causes auto-answer mode to be reset.
BSCLIB reports a connection when the DSR modem signal is
detected from the local modem.

Time -out:

The value passed in the Time-out field of the BCB specifies the
time in units of 100 milliseconds (tenths of seconds) the process
will "keep trying", in the absence of successful completion or
specific failure, before returning a return code of 11 (Command
Time -out). A Time -out value of 0 instructs BSCLIB to wait
indefinitely for a connection. A non-blocking OPEN call may be
aborted by issuing the ABORT command.

Return Codes:
For blocking calls, return codes may be:

 0 Successful completion, connection established
 11 Command timed out, connection not established

185 Modem error occurred

Any other return code signals failure to achieve connection.

After non-blocking calls, you may receive either of the above, as well as the
following return code from a STATUS call:

 180 Ring detected
 255 Open in progress

 Programmer’s Guide

 71

4.4.4 Opcode 3 − READ Command

In point-to-point operation, this command is used to instruct BSCLIB that
the application is ready to accept a line bid in order to start receiving data.
In multi-point control station operation, this command instructs BSCLIB to
transmit one or more poll sequences to Get data from a remote tributary
station. In multi-point tributary operation, this command instructs BSCLIB
to positively respond to the next select that matches the defined address
such that data can be received from the remote control station. One of the
READ command's subopcodes (i.e. Send RVI) may also be used to tell the
remote station to stop sending data.

Prerequisite Calls:

INSTALL
OPEN

Subopcodes:

0 − Standard Read
1 − Abort Read
2 − Initiate RVI
3 − Uni-Directional Standard Read
4 − Read To ETX Terminated Block (in preparation to send a
 conversational reply)
10 − Get Received Terminal ID
11 − Get Selected Station Address
20 − Store Multi-Point Address
21 − Store Multiple Select Address List
22 − Add Select Address To List
23 − Remove Select Address From List

Input BCB Fields:
Byte 0 Opcode
Byte 2 Subopcode
Byte 4,5 Flags
Byte 6-9 32-Bit Buffer Address
Byte 10,11 Buffer Size
Byte 14,15 Time -out
Byte 16,17 Auxiliary Flags
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

BSCLIB

72

Returned BCB Fields:
Byte 1 Return Code
Byte 4,5 Flags
Byte 12,13 I/O Size

4.4.4.1 Subopcode 0 − Standard Read
In point-to-point operation, the Standard Read function of the READ
command instructs BSCLIB to accept a line bid and data blocks from the
remote station. Similarly in multi-point tributary mode, this function
instructs BSCLIB to respond positively to a select that matches a specified
address. The select address is defined via the Store Multi-Point Address
function (subopcode 20) or the Store Multiple Select Address List function
(subopcode 21) before the first Standard Read is issued.

Line Bids and selects from the remote station are NAKed until the READ
command is called. If a read has begun and BSCLIB's data blocks are full,
WACKs are sent to the remote station until a data block is emptied by
issuing READ commands.

In multi-point control station mode, the Standard Read function results in
poll sequences being transmitted to the remote tributary station. The poll
address is specified via the Store Multi-Point Address function prior to the
first Standard Read is issued. The number of polls transmitted is controlled
by the Bid Retry Limit in the Parameter Initialization Block (PIB).

Records are extracted sequentially from each data block and returned in
your program's BCB Buffer. Until BSCLIB receives an EOT, DLE-EOT,
or a disconnect occurs, READ commands must be issued continuously to
retrieve each record from the received data blocks. DO NOT use the
STATUS command to poll for inbound data. Rather, issue READ
commands at regular intervals with the non-blocking bit set. Examine the
Returned I/O Size field to determine if data has been received: greater than
0 indicates data is in the buffer; 0 indicates nothing has been received since
the last READ command.

Flags:

Bit 0 − Non-blocking I/O:

 0 = No
 1 = Yes

If Non-blocking I/O = 0, then BSCLIB does not return control to
your program until a record from a received data block is copied
into your program's BCB Buffer or the Time -out expires. Setting

 Programmer’s Guide

 73

the Non-blocking I/O flag = 1 instructs BSCLIB to return control
immediately without waiting for data to be received. Return Code
255 is returned indicating that the READ is in progress.

Bit 2 − Binary File Mode:
 0 = No
 1 = Yes

If Binary File Mode = 1, BSCLIB does not perform an EBCDIC to
ASCII translation of received transparent data blocks. Because this
is a non-standard protocol, the receiving station must be expecting
to receive binary data. If non-transparent data blocks are received
this flag has no effect.

Bit 5 − Expand Spaces:
 0 = No
 1 = Yes

If Expand Spaces = 1, BSCLIB will expand received space
compression sequences when data records are copied to your
program's buffer. Expansion will not be performed if the Expand
Spaces flag = 0.

Bit 6 − Suppress VFC at ETB/ETX:
 0 = No
 1 = Yes

VFC is an abbreviation for Vertical Forms Control. When BSCLIB
finds a record terminated by an ETB or ETX and Suppress VFC =
1, the record is returned to your application program without
having carriage control appended to the end. When Suppress VFC
= 0, a CR/LF or LF will be appended to the record unless another
recognized VFC sequence preceded the record. This option is
typically used to avoid a single CR/LF or LF being returned to
your application program after a record ending with a record
separator (IRS/IUS) is found to be followed immediately by an
ETB or ETX. The block in this case looks like this:

...<Rec 1><IRS>...<Rec n><IRS><ETX>...

Bit 7 − Decode VFC:

 0 = No
 1 = Yes

If Decode VFC = 1, BSCLIB will convert received Vertical Forms
Control characters to ASCII carriage control characters.
Conversion will not be performed if the Decode VFC = 0. If VFC

BSCLIB

74

is not decoded, BSCLIB defaults to a single carriage return / line
feed (single space.) The following VFC sequences are recognized:

 Esc T − triple space
 Esc S − double space
 Esc / − single space
 Esc M − suppress space
 Esc A − top of form

Bit 8 − Strip VFC:

 0 = No
 1 = Yes

If Decode VFC = 1, Strip VFC is ignored. If Decode VFC = 0 and
Strip VFC = 1, BSCLIB will discard received Vertical Forms
Control characters from the data blocks. If both Decode VFC and
Strip VFC = 0, the VFC sequences are passed intact to your
application program.

Bit 12 − Suppress Block Response:
 0 = No
 1 = Yes

If Suppress Block Response = 1 and a Uni-Directional Read is in
progress, BSCLIB does not transmit a block response (i.e., ACK/0
or NAK). This results in a continuous stream of unacknowledged
data blocks being accepted by BSCLIB. This results in a purely
one-way data transfer.

Bit 13 − Accept NAK'd Data Blocks:

 0 = No
 1 = Yes

If Accept NAK'd Data Blocks = 1 and a Uni-Directional Read is in
progress, BSCLIB does not discard data blocks received with a
CRC or LRC error. The contents of the block is passed to your
application program as if the block was received error free − any
error detection is the responsibility of your application.

Bit 14 − Block Acknowledgement Control:
 0 = Disabled
 1 = Enabled

When Block Acknowledgement Control = 1 on the first READ
command, BSCLIB enables a mode in which your application
program has control over whether an ACK is sent in response to an
otherwise valid data block. This flag must be set on the first

 Programmer’s Guide

 75

READ or it will be ignored. This feature is supported only when
configured for 3780 emulation.

This feature permits your application to examine data received
from the remote system and make a decision if the data is to be
accepted or not. A typical application would be the rejection of an
invalid sign-on record.

A block is positively acknowledged when your application issues
the next READ. If the block is to be rejected, your application
should issue an ABORT. If your application does not issue a
command quickly enough (within approximately two seconds),
BSCLIB sends WACK responses until a READ or ABORT is
issued.

Auxiliary Flags:

Bit 0 − Disable Printer:

 0 = No
 1 = Yes

If Disable Printer = 1 and Master Device Control = 1, BSCLIB
disables the printer receive device. All incoming data bound for
the printer is refused with an immediate response of an EOT.
When another READ command is issued with Disable Printer = 0
and Master Device Control = 1, the printer receive device is re-
enabled.

Bit 1 − Disable Punch:

 0 = No
 1 = Yes

If Disable Punch = 1 and Master Device Control = 1, BSCLIB
disables the punch receive device. All incoming data bound for the
punch is refused with an immediate response of an EOT. When
another READ command is issued with Disable Punch = 0 and
Master Device Control = 1, the punch receive device is re-enabled.

Bit 2 − Master Device Control:
When Master Device Control = 1, BSCLIB examines the Disable
Printer and Disable Punch flags and performs appropriately. These
flags are ignored when Master Device Control = 0.

Bit 3 − Disable Translation:

 0 = No
 1 = Yes

If Disable Translation = 1, BSCLIB bypasses EBCDIC to ASCII
translation on inbound data, whether it be transparent or non-

BSCLIB

76

transparent data. This option may be used in conjunction with the
Suppress VFC at ETX/ETB and Suppress IRS/IUS options to
permit your application program to receive the raw non-transparent
data sent by the remote system. All interpretation of the data is left
to your program.

Bit 4 − Recognize New Lines:
 0 = No
 1 = Yes

If Recognize New Lines = 1, BSCLIB recognizes EBCDIC New
Line (NL) characters as record delimiters in received data blocks.
BSCLIB translates each NL character to CR/LF. All NL
characters are included in records as data if the flag is set to 0.

Bit 6 − Suppress IRS/IUS:
 0 = No
 1 = Yes

If Suppress IRS/IUS = 1, BSCLIB ignores the IRS (in 3780 mode)
or the IUS (in 2780 mode) control characters that are normally
used to mark the end of a logical record in the data stream. The
IRS/IUS is returned to your program if Disable Translation = 1and
BSCLIB uses the Printer or Punch Record Size value to determine
how many characters to return. No VFC or CR/LF sequences are
returned to your program so determination of logical record
formatting is left to your application program.

Bit 10 − Enable Automatic 3780/2780 Protocol Detection:
 0 = No
 1 = Yes

If Enable Automatic 3780/2780 Protocol Detection = 1, BSCLIB
will inspect the incoming data stream for telltale indicators of
either a 3780 or 2780 data stream and automatically configure
itself accordingly for the duration of the connection. The following
indicators are used:

3780 Data Stream
IRS record separator characters
IGS space compression characters

2780 Data Stream
EM record separator character
ITB intermediate block check characters

 Programmer’s Guide

 77

The success or failure of this detection feature depends on the
contents of a specific data stream. It is possible for BSCLIB to not
be able to make a protocol determination. This is especially true of
uncompressed text, transparent, or binary data streams. It is
incumbent on the BSCLIB application developer to be aware
of the nature of the possible data streams before depending on
this feature of BSCLIB for accurate protocol detection.

For this option to work properly, your application must configure
BSCLIB initially for 3780 emulation.

Bit 14 − Disable Abort Receive Delay:

 0 = No
 1 = Yes

If Disable Abort Receive Delay = 1, BSCLIB will immediately
respond to a request to abort a receive operation. Enabling this
option may be necessary in certain applications when there is a
high volume of bidirectional message traffic, especially if the
messages are short. Otherwise, do not change this option.

Bit 15 − Enable Abort Prevention:

 0 = No
 1 = Yes

If Enable Abort Prevention = 1, BSCLIB ignores an ABORT
request on a READ if it detects that a line bid has been received. If
this occurs, return code 131 is returned on an ABORT command
and your application should resume issuing READs to get the
received data.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
in which BSCLIB will return a received data record.

Buffer Size:
The value passed in the Buffer Size field of the BCB specifies the
size in bytes of the buffer pointed to by the Buffer Address field.
If a data record is received which is larger than the specified Buffer
Size, it will be truncated to fit (see returned Flags). The buffer
must be large enough to fit the largest record you will receive, plus
any extra VFC characters (i.e. CR/LF).

Time -out:

The value passed in the Time-out field of the BCB specifies the
number of 100 milliseconds intervals to wait for data to be

BSCLIB

78

available before returning a time -out Return Code. A Time-out
value of 0 instructs BSCLIB to wait indefinitely for data.

Returned Flags:

Bit 1 − Transparent Mode Detected:
 0 = No
 1 = Yes

If BSCLIB returns with Transparent Mode Detected = 1, an
incoming transparent transmission has been detected. If your
program set Binary Data Mode = 1 when making the READ
command, your program may safely assume that binary data is
being received. If the incoming data is not transparent, the value of
this flag will be 0.

Bit 4 − PUNCH Select:
 0 = No
 1 = Yes

If PUNCH Select = 1, BSCLIB has received a Punch Select
sequence from the remote station. If this bit is not set, you can
assume the printer has been selected.

Bit 9 − Buffer Overflow:
 0 = No
 1 = Yes

If Buffer Overflow = 1, BSCLIB has found a record which is larger
than the size specified in the Buffer Size field of the BCB.

Bit 10 − Record Truncated:
 0 = No
 1 = Yes

If Record Truncated = 1, BSCLIB has found a record which is
larger than the configured Printer or Punch Record Size. Excess
characters are returned on the next READ.

Bit 15 − Last Record:
 0 = No
 1 = Yes

If Last Record = 1, BSCLIB is returning the last record in an ETX
terminated block. Such a record is always the last record in an
inbound block. This flag may be used to detect the end of a logical
grouping within a transmission.

 Programmer’s Guide

 79

Returned Auxiliary Flags:

Bit 7 − SOH Received:

 0 = No
 1 = Yes

BSCLIB returns with SOH Received = 1 on a READ that returns a
record found immediately following a SOH character. Such a
record is always the first record in an inbound block.

Bit 11 − Receive Protocol Detected:

 0 = 2780
 1 = 3780

This flag is set to indicate whether a 3780 or 2780 data stream is
presently being processed by BSCLIB. This flag has no real value
unless Enable Automatic 3780/2780 Protocol Detection is enabled
on the READ because it simply reflects the originally configured
protocol. If the detection feature is enabled, however, this flag will
reflect which protocol BSCLIB actually detected.

Bit 13 − Last Record in Data Block:

 0 = No
 1 = Yes

If Last Record in Data Block = 1, BSCLIB is returning the last
record in an ETB terminated block. Such a record is always the
last record in an inbound block. This bit will also be set it bit 15 in
Flags is set.

Returned I/O Size:
The value returned in the I/O Size field of the BCB indicates the
number of bytes BSCLIB copied into your program's buffer. This
field should always be examined for a non-zero value as an
indicator that data has been copied into the buffer even if a Return
Code other than I/O in progress was returned.

4.4.4.2 Subopcode 1 − Abort Read
The Abort Read function of the READ command instructs BSCLIB to stop
accepting data or a line bid from the remote station. If a Line Bid has
already been accepted, an End of Transmission (EOT) is sent to the remote
station as an instruction to stop sending data and an indication that BSCLIB
has stopped processing data already received. The STATUS command
must be used to check for the completion of the Abort Read function.

BSCLIB

80

4.4.4.3 Subopcode 2 − Initiate RVI (Reverse Interrupt)
The Initiate RVI function of the READ command instructs BSCLIB to
request control of the communication line by sending an RVI to the remote
station after the next data block is received. The RVI is an acknowledgment
that the data block has been properly received. It requests that the remote
station stop sending data and to send an EOT in order to end the data
transfer. After your application sends an RVI, the remote system expects
your application to begin transmitting. If a Line Bid has not been received
yet, the Initiate RVI function is treated as an Abort.

Standard READ functions should be continued until all data records have
been processed and an EOT received Return Code is returned. If the remote
station does not support RVIs, then the ABORT command should be used
instead.

4.4.4.4 Subopcode 3 − Uni-Directional Standard Read
The Uni-Directional Standard Read function of the READ command
enables what is referred to as “uni-directional” or “simplex” receives on the
part of BSCLIB. This function may be used only in point-to-point
connections. A uni-directional receive operation is for the most part
identical to a Standard Read function, but differs from a normal BSCLIB
receive in the following ways:

• no line bid is allowed; BSCLIB expects the inbound data to begin
immediately with an SOH, STX or DLE-STX followed by a normal
BSC data block

• BSCLIB always responds to the received data block with ACK/1;

NAK or WACK; if Suppress Block Response = 1, BSCLIB
suppresses all block responses completely

This type of read is useful in one-way data feeds where less than 100% data
integrity is permissible. Standard and Uni-Directional Standard Read's
should not be mixed during the same session.

4.4.4.5 Subopcode 4 − Read To ETX Terminated Block
The Read To ETX Terminated Block function of the READ command is the
first step to enabling your application to send a limited conversational reply.
This function otherwise identical to a Standard READ, but will return result
code 132 when an ETX terminated block is received. At this point the
READ operation is complete, and your application must issue WRITE's in
order to transmit the data making up the conversational reply.

 Programmer’s Guide

 81

4.4.4.6 Subopcode 10 − Get Received Terminal ID
This function returns the most recently received terminal ID string if any.
Terminal ID's are optional and are used only in point-to-point connections.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
in which BSCLIB will return the terminal ID string. This string can
be up to 20 bytes in length. YOUR PROGRAM MUST PROVIDE
A POINTER TO A SUFFICIENTLY LARGE BUFFER.

Returned I/O Size:
The size of the string is returned in the Buffer Address field. If no
terminal ID has been received, zero is returned.

4.4.4.7 Subopcode 11 − Get Selected Station Address
This function returns the received select address that matched an entry in the
select address list created with the Store Multiple Select Address List
function (subopcode 21). When BSCLIB is configured to recognize
multiple select address as a tributary station in multi-point mode, this
function is how your program knows which station the remote system has
selected for the data arriving during this READ command. Your program
should call this function immediately after the first Standard READ returns
indicating that data has been received.

Buffer Address:

The Buffer Address field of the BCB contains a pointer to a buffer
in which BSCLIB will return the select address string. Allow for a
string up to 20 bytes in length. YOUR PROGRAM MUST
PROVIDE A POINTER TO A SUFFICIENTLY LARGE
BUFFER.

Returned I/O Size:

The size of the string is returned in the Buffer Address field.

4.4.4.8 Subopcode 20 − Store Multi-Point Address
The Store Multi-Point Address function of the READ command specifies
the poll or select address associated with the READ command.

For an application configured as a Control Station, this function specifies
the polling address of the tributary station to be read from. If the Control
Station is polling to multiple tributary stations, this address must be changed
prior to initiating a new read intended for a different station.

BSCLIB

82

For an application configured as a Tributary Station, this function specifies
the station's select address. Alternatively, you may specify one or more
select addresses using READ Subopcode 21 Store Multiple Select Address
List function described below, but both methods cannot be used. Calling
this function cancels the use of a select address list if one has been defined.

Buffe r Address:
The Buffer Address field of the BCB contains a pointer to a null
terminated string which defines the multi-point address. This
string should be six characters or less.

4.4.4.9 Subopcode 21 − Store Multiple Select Address List

The Store Multiple Select Address List function of the READ command
allows your program to specify one or more select addresses to be
associated with the READ command. If your application is emulating a
control unit with mu ltiple devices, this function allows you to define all
individual devices or stations for which data is to be accepted.

This function only applies to tributary stations and is mutually exclusive
with the Store Multi-Point Address function. This means that when this
function is called, the addresses in the list are used to recognize a select
from the remote overriding the select address that may have been set with
READ Subopcode 20 Store Multi-Point Address.

When multiple select addresses are defined, BSCLIB compares each
address received with the contents of this list. If there is a match, BSCLIB
accepts the select. If necessary, your application may use the “Get Selected
Station Address” function (subopcode 11) to get the address that was
matched − do this immediately upon detecting inbound data.

Buffer Address:
 The Buffer Address field of the BCB contains a pointer to
a list of up to 64 null terminated strings that define the multi-point
addresses. Each address string should be six characters or less.
The end of the list is marked by one more nulls.

4.4.4.10 Subopcode 22 − Add Select Address To List

The Add Select Address To List function of the READ command adds one
address to the select address list. The list may have been previously created
by the Store Multiple Select Address List function or added to one at a time
using this function. BSCLIB maintains up to 64 20-character select
addresses in the select address list. Addresses can be added to the list at any
time when a READ is not in progress.

 Programmer’s Guide

 83

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a null
terminated string that defines the address to be added to the list.
This string should be six characters or less.

4.4.4.11 Subopcode 23 − Remove Select Address From List

The Remove Select Address From List function of the READ command
removes one address from the select address list created by the Store
Multiple Select Addresses function or added to by the Add Select Address
To List function (subopcode 22). BSCLIB maintains up to 64 20-character
select addresses in the select address list. Addresses can be removed from
the select address list at any time when a READ is not in progress.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a null
terminated string which specifies the address to be removed from
the list. This string should be six characters or less.

4.4.5 Opcode 4 − WRITE Command
In point-to-point operation, this command is used to instruct BSCLIB to
request control of the line and to transmit data to the remote station. In
multi-point control station operation, this command instructs BSCLIB to
transmit one or more select sequences to initiate a transmission to a remote
tributary station. In multi-point tributary operation, this command instructs
BSCLIB to positively respond to the next poll that matches the defined
address such that data can be transmitted to the remote control station.

Prerequisite Calls:
INSTALL
OPEN

Subopcodes:

0 − Standard
1 − Send ETB Block
2 − Send ETX Block
3 − Send ETX Block and EOT
4 − Send Forward Abort
10 − Send Line Tickle
11 − Send EOT
20 − Store Multi-Point Address

BSCLIB

84

Input BCB Fields:
Byte 0 Opcode
Byte 2 Subopcode
Byte 4,5 Flags
Byte 6-9 32-Bit Buffer Address
Byte 10,11 Buffer Size
Byte 14,15 Time -out
Byte 16,17 Auxiliary Flags
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code
Byte 12,13 I/O Size

4.4.5.1 Subopcode 0 − Standard Write
The Standard Write function of the WRITE command instructs BSCLIB to
copy the data record from your program's BCB buffer into the BSCLIB's
active transmit buffer.

In point-to-point mode, when the first buffer is full, BSCLIB will transmit a
line bid and wait for an acknowledgment (ACK) from the remote station −
at this time the first data block is sent. Subsequent blocks are sent as soon
as a transmit buffer is filled.

In multi-point control station mode, BSCLIB sends a select sequence when
the first buffer is full. The select address is defined via the Store Multi-
Point Address function (subopcode 20) before the first Standard Write is
issued.

In multi-point tributary mode, the Standard Write function instructs
BSCLIB to recognize a poll sequence once the first buffer is full in
preparation to transmit of data to the control station. The poll address is
defined by issuing the Store Multi-Point Address function before the first
Standard Write is issued.

Flags:

Bit 0 − Non-blocking I/O:
 0 = No
 1 = Yes

If Non-blocking I/O = 0, then BSCLIB does not return control to
your program until the record is copied to the transmit buffer and,

 Programmer’s Guide

 85

if the buffer becomes full, the buffer is transmitted, or the Time-out
expires. Setting this flag = 1 instructs BSCLIB to return control
immediately without waiting for the data block to be transmitted.

When Non-blocking I/O = 1, the STATUS command must be
called to check for the completion of the transmission or an error
condition after the last record is written.

Bit 1 − Transparent Mode:

 0 = No
 1 = Yes

If Transparent Mode = 1, BSCLIB sends all data blocks in the
session using EBCDIC transparency. Any data character in the
outbound stream that would be interpreted as a BSC control
character (e.g., ETX) has a DLE character inserted before it. All
transparent data blocks begin with a DLE-STX and end with a
DLE-ETB or DLE-ETX indicating to the remote station that the
blocks contain transparent data.

Bit 2 − Binary File Mode:
 0 = No
 1 = Yes

If Binary File Mode = 0, BSCLIB translates ASCII characters to
EBCDIC in accordance with its built-in translation table before
moving them to the transmit buffer. The translation table may be
modified using the INITIALIZE command’s Store Translation
Table function (subopcode 2).

 If Binary File Mode = 1, BSCLIB does no ASCII-to-EBCDIC
translation of outbound data when it is copied to BSCLIB's
transmit buffer. Data blocks are then sent in transparent mode.
Because this is a non-standard protocol, the remote station must be
expecting to receive binary data.

Bit 4 − Punch Select:
 0 = No
 1 = Yes

If Punch Select = 1, BSCLIB sends a Punch select sequence (DC3)
in front of the first data block transmitted to the remote station.

Bit 5 − Compress Spaces:
 0 = No
 1 = Yes

BSCLIB

86

If Compress Spaces = 1, BSCLIB will compress strings of spaces
into space compression sequences when data records are copied to
BSCLIB's transmit buffer. Compression will not be performed if
Compress Spaces = 0.

Space compression should not be enabled unless it is known that
the remote system has space expansion enabled.

Bit 7 − Leave Final IRS:
 0 = No
 1 = Yes

If Leave Final IRS = 1, BSCLIB does not remove the Inter-Record
Separator (IRS) from the last record in an outbound data block.
The block is formatted as shown:

...<Rec 1><IRS>...<Rec n><IRS><ETX>...

By default BSCLIB removes the final IRS in a block (any IRS that
immediately precedes the ETB or ETX.) The block is:

...<Rec 1><IRS>...<Rec n><ETX>...

Bit 13 – Enable Record Truncation in 3780 Mode:

 0 = No
 1 = Yes

If Enable Record Truncation in 3780 Mode = 1, BSCLIB strips any
trailing spaces in records before placing them in a communication
buffer for transmission. This option has no effect is 2780 mode is
selected.

Bit 15 – Retransmit Block After NAK on ENQ:
 0 = No
 1 = Yes

This flag permits your application to control how BSCLIB
attempts to recover from an unusual bisync transmission error. By
default, BSCLIB disconnects the line if the following condition
occurs:

 <Data Block> →
 ← (no response)
 ENQ →
 ← NAK
 (Disconnect) →

 Programmer’s Guide

 87

If Retransmit Block After NAK on ENQ = 1, BSCLIB retransmits
<Data Block> rather than disconnecting should this condition
occur. It is the opinion of Serengeti Systems that the safe thing to
do (to preclude the transmission of duplicate data) is to disconnect,
but in some situations retransmission of the block is the preferred
action.

Auxiliary Flags:

Bit 3 − Disable Translation:

 0 = No
 1 = Yes

If Disable Translation = 1, BSCLIB bypasses ASCII to EBCDIC
translation on outbound data. Your program is responsible for
insuring that the outbound data is in a valid format and contains no
characters that could be misinterpreted as BSC control characters.
The presence of control characters in a non-transparent
transmission could inadvertently be recognized as BSC control
characters by the remote system and result in transmission failure.

Bit 5 − Suppress IRS:
 0 = No
 1 = Yes

If Suppress IRS = 1, BSCLIB does not insert a record separator
after each logical record within the outbound data stream. This
flag applies to 3780 mode only.

Bit 7 − Start Block With SOH:
 0 = No
 1 = Yes

If Start Block With SOH = 1, BSCLIB begins each outbound block
with an SOH character (instead of an STX). A second WRITE into
the same block results in an STX followed by the written data to be
inserted into the block. All subsequent WRITEs into the block are
unaffected. For example, after three WRITE commands the block
is as follows:

 <SOH><rec 1><STX><rec2><rec3> ...

This flag cannot be used on transparent or binary WRITE
commands. As long as this flag is set, all outbound blocks are
handled in this way. It is up to your application to manage the
placement of records that must be between each SOH and STX.

SOH headers are not commonly used and necessary only if
required by the remote system.

BSCLIB

88

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
from which BSCLIB will copy the data record to be transmitted.

Buffer Size:
The value passed in the Buffer Size field of the BCB specifies the
size in bytes of the buffer pointed to by the Buffer Address field.

Time -out:
The value passed in the Time-out field of the BCB specifies the
number of tenths of seconds (100 milliseconds) to wait for data to
be transmitted before returning a time-out Return Code. A Time-
out value of 0 instructs BSCLIB to try indefinitely to transmit (See
also BID Retry, ENQ Retry, and NAK limits.) If WRITE is called
with the Non-blocking I/O Flag = 1 and a Time -out = 0, the
Standard Write function may be aborted by issuing the ABORT
command.

Returned I/O Size:
The value returned in the I/O Size field of the BCB indicates the
number of bytes BSCLIB copied into its transmit buffer.

4.4.5.2 Subopcode 1 − Send ETB Block
The Send ETB Block function of the WRITE command instructs BSCLIB
to copy the data record from your program's BCB buffer into the BSCLIB's
transmit buffer and send the buffer as a data block ending with an ETB (end
of transmission block.) An ETB is the normal block terminating character
of all blocks other than the last block sent in a file transmission.

Flags:
Bit 14 – Ignore Record :

 0 = No
 1 = Yes

If Ignore Record (formally “No Empty Record”) = 1, BSCLIB
ignores anything that may be in the Buffer Address and Buffer Size
fields and force the transmission of data.

In effect this option tells BSCLIB to ignore any record present in
this WRITE call’s BCB and to initiate transmission of any
previously written records. Any pending transmit buffer is
terminated with an ETB or ETX (as appropriate) and the
transmitted.

 Programmer’s Guide

 89

If Ignore Record = 0, even if the Buffer Size field was 0, BSCLIB
would add an empty record to the end of the buffer before the ETB
or ETX.

4.4.5.3 Subopcode 2 − Send ETX Block
The Send ETX Block function of the WRITE command instructs BSCLIB
to copy the data record from your program's BCB buffer into the BSCLIB's
transmit buffer and send the buffer as a data block ending with an ETX (end
of text.) An ETX is the normal block terminating character of last block
sent in a transmission. ETX blocks are often used to indicate the end of
each file when sending multiple files.

Flags:

Bit 14 – Ignore Record:
 0 = No
 1 = Yes

If Ignore Record (formally “No Empty Record”) = 1, BSCLIB
ignores anything that may be in the Buffer Address and Buffer Size
fields and force the transmission of data.

In effect this option tells BSCLIB to ignore any record present in
this WRITE call’s BCB and to initiate transmission of any
previously written records. Any pending transmit buffer is
terminated with an ETB or ETX (as appropriate) and the
transmitted.

If Ignore Record = 0, even if the Buffer Size field was 0, BSCLIB
would add an empty record to the end of the buffer before the ETB
or ETX.

Auxiliary Flags:

Bit 11 − Conversational Reply Allowed:
 0 = No
 1 = Yes

If Conversational Reply Allowed = 1, BSCLIB will accept a
conversational reply to a transmitted data block that ends with an
ETX. If a conversational reply is detected, BSCLIB returns result
code 111 to your application. At this time, the WRITE has
completed and your application should issue READ's immediately
to read the data contained in the conversational reply and any
subsequent data that may be received.

BSCLIB

90

4.4.5.4 Subopcode 3 − Send ETX Block and EOT
The Send ETX Block and EOT function of the WRITE command instructs
BSCLIB to copy the data record from your program's BCB buffer into the
BSCLIB's transmit buffer and send the buffer as a data block ending with an
ETX. After the block has been sent and acknowledged by the remote
station, and EOT (end-of-transmission) is sent, releasing control of the line.

Flags:
Bit 14 – Ignore Record:

 0 = No
 1 = Yes

If Ignore Record (formally “No Empty Record”) = 1, BSCLIB
ignores anything that may be in the Buffer Address and Buffer Size
fields and force the transmission of data.

In effect this option tells BSCLIB to ignore any record present in
this WRITE call’s BCB and to initiate transmission of any
previously written records. Any pending transmit buffer is
terminated with an ETB or ETX (as appropriate) and the
transmitted.

If Ignore Record = 0, even if the Buffer Size field was 0, BSCLIB
would add an empty record to the end of the buffer before the ETB
or ETX.

Auxiliary Flags:

Bit 11 − Conversational Reply Allowed:

 0 = No
 1 = Yes

If Conversational Reply Allowed = 1, BSCLIB will accept a
conversational reply to a transmitted data block that ends with an
ETX. If a conversational reply is detected, BSCLIB returns result
code 111 to your application. At this time, the WRITE has
completed and your application should issue READs immediately
to read the data contained in the conversational reply and any
subsequent data that may be received.

Buffer Size:

Same as Standard otherwise a Buffer Size of 0 instructs BSCLIB to
terminate the current block after the previously buffered data
record.

 Programmer’s Guide

 91

Returned Auxiliary Flags:

Bit 8 − Residual Transmit Record Pending:

 0 = No
 1 = Yes

If Residual Transmit Record Pending = 1, on return to your
program all or part of the previous record written to BSCLIB did
not fit into the communication buffer. When Residual Transmit
Record Pending = 1 after the program has written the last record
(using the Write ETX Block and EOT function) your program
should consider the WRITE command to be incomplete. One
additional WRITE command must be made to force this partial
record to be transmitted. This final call should be a zero length
write with Bit 14 of BCB flags set.

4.4.5.5 Subopcode 4 − Send Forward Abort
The Send Forward Abort function of the WRITE command instructs
BSCLIB send a Forward Abort sequence to the remote station, releasing
control of the line and aborting the WRITE command. This informs the
remote station that the sender must abnormally end the transmission and
perhaps to disregard data blocks sent during the current session.

Flags:

Bit 0 − Non-blocking I/O:
 0 = No
 1 = Yes

If Non-blocking I/O = 0 then BSCLIB does not return control to
your program until the Forward Abort has been sent or the Time -
out expires. Setting Non-blocking I/O = 1 instructs BSCLIB to
return control immediately without waiting for the transmission to
complete. The STATUS command must be used to check for the
completion of the transmission or an error condition.

4.4.5.6 Subopcode 10 − Send Line Tickle
The Send Line Tickle function of the WRITE command instructs BSCLIB
send a Line Tickle sequence to the remote station. When a Line Tickle is
requested, a Line Bid is sent followed by an EOT after the Line Bid has
been ACKed by the remote station. This may be used by an application to
keep the remote station's No Activity Time-out from expiring.

A WRITE command with this function may not be used if a WRITE is
already in progress.

BSCLIB

92

4.4.5.7 Subopcode 11 − Send EOT
The Send EOT (End of Transmission) function of the WRITE command
instructs BSCLIB send an EOT to the remote station. This may be used by
an application to insure that the remote station knows that control of the line
has been relinquished.

A WRITE command to send an EOT may not be used if a WRITE is
already in progress (use the Write ETX Block and EOT function).

4.4.5.8 Subopcode 20 − Store Multi-Point Address
The Store Multi-Point Address function of the WRITE command specifies
the poll or select address associated with the WRITE command. For an
application configured as a Control Station, the WRITE multi-point address
specifies the select address of the tributary station to be sent to. If the
Control Station is sending to multiple tributary stations, this address must be
changed prior to initiating a write whenever the tributary station changes.
For an application configured as a Tributary Station, the WRITE multi-point
address specifies the station's polling address.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to null
terminated string which defines the multi-point address. This
string should be six characters or less.

4.4.6 Opcode 5 − ABORT Command
This command instructs BSCLIB to abort a pending OPEN command or to
abort a READ or WRITE command in progress. When a READ is in
progress this command is identical to the Abort Read function of the READ
command; when a WRITE is in progress this command is identical to the
Send Forward Abort function of the WRITE command.

Prerequisite Calls:
 INSTALL
 OPEN
 READ
 WRITE

Subopcodes:
 None

 Programmer’s Guide

 93

Input BCB Fields:
Byte 0 Opcode
Byte 4,5 Flags
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:
Byte 1 Return Code

Flags:

Bit 0 − Non-blocking I/O:
 0 = No
 1 = Yes

If Non-blocking I/O = 0 then BSCLIB does not return control to
your program until the abort completes. Setting Non-blocking I/O
= 1 instructs BSCLIB to return control immediately without
waiting for the abort to complete. The STATUS command must be
used to check for completion or an error condition.

4.4.7 Opcode 6 − STATUS Command

This command instructs BSCLIB return the status of a pending OPEN,
ABORT , or WRITE command in progress. If the command has not
completed and has not encountered an error condition, a 255 Return Code
(I/O in progress) is returned indicating the command is still in progress.

Your application program can call this command regularly to check for the
completion of a non-blocking I/O command such as an auto-dial OPEN,
ABORT or WRITE. When a READ command has been initiated, your
application should issue additional READ commands until completion
rather than use this command.

Prerequisite Calls:
INSTALL

Subopcodes:

None

Input BCB Fields:
Byte 0 Opcode
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

BSCLIB

94

Returned BCB Fields:
Byte 1 Return Code
Byte 2 Subopcode
Byte 3 BSCLIB State

Subopcode:

The opcode of current/last I/O operation in progress is returned in
this field.

BSCLIB State:
The value returned in this field indicates the current state of the
BSCLIB command in progress. See Appendix B for a list of State
Codes and definitions.

4.4.8 Opcode 7 − STATISTICS Command
Use of the STATISTICS command and all its functions is optional.

Prerequisite Calls:
INSTALL

Subopcodes:

0 − Initialize Statistics
1 − Read Statistics
10 – Set ‘TTDs Sent’ value in SPB to count TTDs received
11 – Reset ‘TTDs Sent’ value in SPB to count TTDs transmitted

Input BCB Fields:

Byte 0 Opcode
Byte 2 Subopcode
Byte 6-9 32-Bit Buffer Address
Byte 22 Port (SyncPCI and Sma rtSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code

4.4.8.1 Subopcode 0 − Initialize Statistics
The Initialize Statistics function of the STATISTICS command is used to
initialize BSCLIB's Statistics Parameter Block (SPB) structure, which is
used to collect statistics of the communications session. When this function

 Programmer’s Guide

 95

is called all field values in the supplied SPB structure are copied into
BSCLIB’s internal structure and thus initialized.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
containing an SPB Structure loaded with the desired initialization
values (typically all 0's.)

4.4.8.2 Subopcode 1 − Read Statistics
The Read Statistics function of the STATISTICS command is used to copy
BSCLIB's structure used to collect statistics of the communications session
into your program's copy of the SPB.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
into which BSCLIB will copy a SPB structure.

Statistics Information Block (SPB) structure is shown in Figures 11, 12, and
14.3. All fields, except for the BSCLIB Link State, are unsigned 16-bit
integers and tally the number of occurrences of the indicated event.
BSCLIB Link State values are listed in Appendix B. See Appendix C for a
detailed description of SPB fields.

4.4.8.3 Subopcode 10 − Set ‘TTDs Sent’ to Count TTDs Received
This function of the STATISTICS command is used to redefine use of a
field in the SPB. The ‘TTDs Sent’ field, by default, counts the number of
TTDs sent by BSCLIB. Calling this function refines this field to count
TTDs received instead.

4.4.8.4 Subopcode 11 − Reset ‘TTDs Sent’ to Count TTDs Sent
This function of the STATISTICS command is used to restore the default
behavior of the ‘TTDs Sent’ field of the SPB.

4.4.9 Opcode 8 − TRACE Command
This command is used to control the communications line trace capabilities
of BSCLIB. BSCLIB tracing may be used to produce a bisync protocol
trace that can be invaluable in troubleshooting communications problems.
Serengeti Systems strongly recommends that all BSCLIB application
include this functionality.

BSCLIB

96

Prerequisite Calls:
None

Subopcodes:

0 − Initialize
1 − Start
2 − Stop
3 − Read
4 − Reset

Input BCB Fields:

Byte 0 Opcode
Byte 2 Subopcode
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code
Byte 18 Trace Flags
Byte 19 Raw (binary) Value
Byte 20 Trace Byte #1
Byte 21 Trace Byte #2

4.4.9.1 Subopcode 0 − Initialize Trace
The Initialize function of the TRACE command prepares BSCLIB internal
tracing and should be the first command issued.

4.4.9.2 Subopcode 1 − Start Trace

The Start function of the TRACE command instructs BSCLIB to start
collecting trace information.

Prerequisite Calls:
INITIALIZE TRACE

4.4.9.3 Subopcode 2 − Stop Trace

The Stop function of the TRACE command instructs BSCLIB to stop
collecting trace information.

Prerequisite Calls:
INITIALIZE TRACE

 Programmer’s Guide

 97

4.4.9.4 Subopcode 3 − Read Trace Buffer
The Read function of the TRACE command instructs BSCLIB to return one
byte of trace information to your program. In SmartSync/DCP adapter
environments, your application program should not use this function to
dump the trace buffer. Instead you should run DCPTRACE utility
simultaneously with your application.

Prerequisite Calls:

INITIALIZE TRACE
START TRACE

Returned Trace Flags:

Bit 0 − Transmit Byte:

 0 = No
 1 = Yes

If Transmit Byte = 1, the byte returned in Raw Value (in binary
form) was transmitted to the remote station by BSCLIB.

Bit 1 − Receive Byte:
 0 = No
 1 = Yes

If Receive Byte = 1, the byte returned in Raw Value (in binary
form) was received from the remote station by BSCLIB.

Bit 6 − Buffer Overflow:
 0 = No
 1 = Yes

If Buffer Overflow = 1, the beginning of the trace buffer has been
overrun and an indeterminable amount of trace data has been lost.
This tells your program that either the trace buffer is too small or
saved trace data is not being removed from the buffer quickly
enough. The byte returned on this call is valid but BSCLIB has no
way to know if it is a transmitted or received character.

Bit 7 − First Byte:
 0 = No
 1 = Yes

If First Byte = 1, the byte returned in Raw Value is the first
transmitted or received (in binary form) after a line turn around.

Returned Raw Value:

This field contains a copy of the character transmitted or received.

BSCLIB

98

Returned Trace Byte #1:
This field contains an ASCII character representing the
hexadecimal value of the most significant nibble of the Raw Value.
For example, if an ENQ character is returned (EBCDIC 2D) this
byte would be '32' which is ASCII for '2.'

The return trace bytes may be used to when writing a ASCII
readable trace log file.

Returned Trace Byte #2:

This field contains an ASCII character representing the
hexadecimal value of the least significant nibble of the Raw Value.
For example, if an ENQ character is returned (EBCDIC 2D) this
byte would be '44' which is ASCII for 'D.'

4.4.9.5 Subopcode 4 − Reset Trace
The Reset function of the TRACE command instructs BSCLIB to discard
any information remaining in the trace buffer, making the entire buffer
available for additional information collection.

4.4.10 Opcode 9 − CLOSE Command
This command instructs BSCLIB to end the communications session and
not respond to any requests from the remote station. If the communications
line is configured as a point-to-point switched line, a Disconnect Sequence
(DLE-EOT) is sent to the remote station.

Prerequisite Calls:

INSTALL
OPEN

Subopcodes:

0 − Standard
1 − Leave DTR

Input BCB Fields:

Byte 0 Opcode
Byte 2 Subopcode
Byte 4,5 Flags
Byte 14,15 Time -out
Byte 16,17 Auxiliary Flags
Byte 22 Port (SyncPCI and SmartSync/DCP)

 Programmer’s Guide

 99

Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code

4.4.10.1 Subopcode 0 − Standard Close
The Standard function of the CLOSE command instructs BSCLIB to end
the communications session and drop the DTR modem signal.

Flags:

Bit 11 − Forced Close:
 0 = No
 1 = Yes

If Forced Close = 1, BSCLIB ends the communications session
even if a READ or a WRITE is currently in progress. Setting the
Forced Close = 0 results in an error being returned if I/O is in
progress.

Bit 12 − Suppress DLE-EOT:
 0 = No
 1 = Yes

If Suppress DLE-EOT = 1, BSCLIB will not send a Disconnect
Sequence. Setting Suppress DLE-EOT = 0, sends a Disconnect
Sequence when a switched line is configured.

Bit 15 − Leave DTR High:
 0 = No
 1 = Yes

If Leave DTR High = 1, the Standard Close function is the same
as Leave DTR function.

Auxiliary Flags:

Bit 11 − Ignore DSR:
 0 = No
 1 = Yes

If Ignore DSR = 1, a CLOSE command to BSCLIB returns
immediately to your program regardless of the state of the DSR
modem signal. If Ignore DSR = 0, BSCLIB does not return to your
program until DSR drops or an internal 20 second time-out occurs.

BSCLIB

100

4.4.10.2 Subopcode 1 − Leave DTR
The Leave DTR function of the CLOSE command instructs BSCLIB to end
the communications session exactly the same as the Standard CLOSE
except the DTR modem signal is to remain high.

4.4.11 Opcode 10 − UNINSTALL Command
This command instructs BSCLIB to terminate all BSC processes, release
any memory resources that may have been allocated, and shut down
BSCLIB.

Prerequisite Calls:

INSTALL
CLOSE (if OPEN has been called)

Subopcodes:
None

Input BCB Fields:

Byte 0 Opcode
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code

4.4.12 Opcode 12 − HARDWARE Command
This command permits your program to determine the computer's hardware
configuration. The INSTALL command does not need to be called prior to
calling this command.

Prerequisite Calls:

None

Subopcodes:

0 − Get hardware adapter type
1 − Return driver serial number
4 − Raise DTR modem signal
5 − Drop DTR modem signal
8 − Return Number of DCP Adapters
9 − Set Block Response Time -Out

 Programmer’s Guide

 101

10 − Set Maximum Async Baud Rate
12 − Get AT Modem Dial Command String
13 − Set AT Modem Dial Command String
14 − Get AT Modem Answer Command String
15 − Set AT Modem Answer Command String
16 − Restore Default Strings
20 − Enable Buffered Reads
21 − Disable Buffered Reads
22 − Set Select Response to NAK
23 − Set Select Response to EOT
24 − Set Select Response to WACK
30 – Turn on BAPI logging
31 – Turn off BAPI logging
32 – Turn on detailed BAPI logging
33 – Turn off detailed BAPI logging
34 – Set maximum BAPI log file size

Input BCB Fields:

Byte 0 Opcode
Byte 2 Subopcode
Byte 6-9 32-Bit Buffer Address
Bytes 10-11 Parms Value
Byte 22 Port (SyncPCI and SmartSync/DCP)
Byte 23 Adapter (SmartSync/DCP)

Returned BCB Fields:

Byte 1 Return Code
Byte 3 Hardware Type

4.4.12.1 Subopcode 0 − Return Hardware Interface Type
This function returns the type of hardware adapter installed in the computer.

Returned State/Type:
The value is returned in the Type field of the BCB. BSCLIB need
not be installed before the hardware type is known. The coded
hardware types are:

 5 − SSI SyncPlus
 7 − SSI SyncPCI
 11 − AutoSync
 94 − 8-Port SmartSync/DCP

BSCLIB

102

4.4.12.2 Subopcode 1 − Return BSCLIB Serial Number
This function returns the BSCLIB serial number.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
where the serial number will be copied. YOUR PROGRAM
MUST ALLOW FOR A 15 char STRING TO BE RETURNED IN
THIS BUFFER.

4.4.12.3 Subopcode 4 − Raise DTR Modem Signal
This function enables your application to raise the DTR modem signal
independent of the OPEN command. Use this command only when it is
necessary to signal the modem or other external device – do not use it to in
an attempt to establish a connection. Use the OPEN command for that.

4.4.12.4 Subopcode 5 − Drop DTR Modem Signal
This function enables your application to drop the DTR modem signal
independent of the OPEN command.

4.4.12.5 Subopcode 8 − Return Number of DCP Adapters
For SmartSync/DCP adapter users, this function returns the number of
available DCP adapters in your system. The value is returned in bytes 10,11
of the BCB.

4.4.12.6 Subopcode 9 − Set Block Response Time-Out

This function changes the block response time-out from its default of two
seconds to the number of seconds specified in the Parms Value field of the
BCB. The block response time-out is the period of time after BSCLIB
transmits a data block before a response is expected.

4.4.12.7 Subopcode 10 − Set Maximum Async Baud Rate

This function sets the maximum speed at which BSCLIB attempts to
communicate when dialing an AT-command set modem. The following
numeric values are placed into the Parms Value field of the BCB to select
the maximum speed:

 12 − 1200bps
 24 − 2400bps

 Programmer’s Guide

 103

 48 − 4800bps
 96 − 9600bps
 19 − 19,200bps
 38 − 38,400bps

4.4.12.8 Subopcode 12 − Get AT Modem Dial Command String

This function returns the current AT modem dial command string. This is
the command sent to an AT-command set modem prior to dialing. The
default string is:

 ATE0X4V0&M1&C1&D2S0=0<CR>

 E0 − no echo
 X4 − dial tone & busy signal return codes
 V0 − result codes as digits
 &M1 − sync mode when connected
 &C1 − DCD on carrier only
 &D2 − DTR loss drops line
 S0=0 − disable auto-answer
 <CR> − carriage return (hex digit 0xd)

This command is automatically sent by BSCLIB to the modem before every
dial command (ATDT...) and after each disconnect. This function enables
your application to get the default (or current) modem initialization string
and modify it. Use the Set AT Modem Dial Command String function to
install the modified command string. This function is not supported in the
AutoSync 2 version of BSCLIB.

Buffer Address:

The Buffer Address field of the BCB contains a pointer to a buffer
where the modem command string will be copied. YOUR
PROGRAM MUST ALLOW FOR A 255 char STRING TO BE
RETURNED IN THIS BUFFER.

Returned I/O Size:
The value returned in the I/O Size field of the BCB indicates the
number of bytes in the returned modem command string.

4.4.12.9 Subopcode 13 − Set AT Modem Dial Command String
This function sets the AT modem dial command string within BSCLIB to a
user defined value. This is the command sent to an AT-command set
modem prior to dialing. The default string is described above.

BSCLIB

104

Altering the default command strings is not recommended but may be
necessary to use a particular modem with BSCLIB. The Set AT Modem
Dial Command String function should be issued before issuing an
INSTALL command. This function is not supported in the AutoSync 2
version of BSCLIB.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
containing the new modem command string. The final byte of this
string MUST be an ASCII CR character (0x0d).

The following example C code snippet sets the initialization string:

 strcpy(new_cmd, "ATE0X4V0&M1&C1&D2S0=0");
 //String must end with CR!!
 strcat(new_cmd, "\r");
 bcb.opcode = 12;
 bcb.subop = 13;
 bcb.buffer = new_cmd;
 callbsc(&bcb);

4.4.12.10 Subopcode 14 − Get AT Modem Answer Command String

This function returns the current AT modem auto-answer command string.
This is the command sent to an AT-command set modem prior setting the
modem into auto-answer mode. The default string is:

 AT&S1S0=1<CR>

 &S1 − DSR on DTR only
 S0=1 − answer after 1st ring
 <CR> − carriage return (hex digit 0xd)

This function enables your application to get the default (or current) auto-
answer initialization string and modify it. Use the Set AT Modem Answer
Command String function to install the modified command string. This
function is not supported in the AutoSync 2 version of BSCLIB.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
where the modem command string will be copied. YOUR
PROGRAM MUST ALLOW FOR A 255 char STRING TO BE
RETURNED IN THIS BUFFER.

 Programmer’s Guide

 105

Returned I/O Size:
The value returned in the I/O Size field of the BCB indicates the
number of bytes in the returned modem command string.

4.4.12.11 Subopcode 15 − Set AT Modem Answer Command String
This function installs a new AT modem auto-answer command string within
BSCLIB. This is the command sent to an AT-command set modem prior
setting the modem into auto-answer mode. The default string is described
above.

Modifying the default command strings is not recommended but may be
necessary to use a particular modem with BSCLIB. The Set AT Modem
Dial Command String function should be issued before issuing an
INSTALL command. This function is not supported in the AutoSync 2
version of BSCLIB.

Buffer Address:
The Buffer Address field of the BCB contains a pointer to a buffer
containing the new modem command string. The final byte of this
string MUST be an ASCII CR character (0x0d).

4.4.12.12 Subopcode 16 −Restore Default Strings

This function installs restores the default AT modem dial and auto-answer
command strings within BSCLIB. The default strings are described above.
This function is not supported in the AutoSync 2 version of BSCLIB.

4.4.12.13 Subopcode 20 − Enable Buffered Driver Reads
This function turns on buffered reads in the device driver. This driver
always has a read active and buffers the reads prior to the system read calls
made by BSCLIB. This option is valid only for Windows NT/2000/XP and
Unix multi-point environments. This function is typically used when the
host sends poll/select sequences as separate transmissions consisting of an
EOT followed by the poll/select address. This function must be called prior
to issuing an OPEN command.

4.4.12.14 Subopcode 21 −Disable Buffered Driver Reads
This function turns off the buffered reads enabled by Subopcode 20 above.

BSCLIB

106

4.4.12.15 Subopcode 22 − Set Select Response to NAK
This function results in BSCLIB setting the “no traffic” response to a select
sequence to a NAK when operating as a tributary station in multi-point
mode. The NAK response is the proper response to a select sequence in this
case as defined in the original BSC protocol specification, and is the default
if neither Set Select Response to EOT (subopcode 23) or Set Select
Response to WACK (subopcode 24) have been issued.

4.4.12.16 Subopcode 23 − Set Select Response to EOT
This function results in BSCLIB setting the “no traffic” response to a select
sequence to be an EOT when operating as a tributary station in multi-point
mode. Do not use this function unless it is specifically required in your
environment for BSCLIB to reply with an EOT instead of a NAK when
BSCLIB is selected and there is nothing to transmit.

4.4.12.17 Subopcode 24 − Set Select Response to WACK
This function results in BSCLIB setting the “no traffic” response to a select
sequence to be a WACK when operating as a tributary station in multi-point
mode. Do not use this function unless it is specifically required in your
environment for BSCLIB to reply with a WACK instead of a NAK when
BSCLIB is selected and there is nothing to transmit.

4.4.12.18 Subopcode 30 − Turn On BAPI Debug Logging

This function turns on BAPI logging. This logging records all BAPI calls
and corresponding parameters on entry and then on exit, and writes this
information to a file. This logging will normally not be necessary, but it can
be helpful in troubleshooting problems.

4.4.12.19 Subopcode 31 − Turn Off BAPI Debug Logging

This function turns off BAPI logging.

4.4.12.20 Subopcode 32 − Turn On Detailed BAPI Debug Logging

This function enables detailed BAPI logging. Detailed logging records more
information than “standard logging”, including all BAPI calls, call
parameters and call exits.

4.4.12.21 Subopcode 33 − Turn Off Detailed BAPI Debug Logging
This function turns off detailed BAPI logging.

 Programmer’s Guide

 107

4.4.12.22 Subopcode 34 − Set Maximum BAPI Log File Size
This function specifies the maximum size of the BAPI log file. The default
size is 20MB.

Parms Value:

The Parms Value field of the BCB contains the a numeric value
specifying maximum size in the BAPI log file expressed in
megabytes.

BSCLIB

108

(Blank Page)

 Programmer’s Guide

 109

5 CONFIGURING BSCLIB
The 32-bit pointer to the structure shown in Figure 10 is passed to BSCLIB
on an INITIALIZE command. The fields within the Parameter Initialization
Block (PIB) structure define operating characteristics of BSCLIB. All
fields, except for byte 2 and the Terminal ID, which is a 20-byte string, are
16-bit unsigned shorts.

By setting Partial Update = 1, the INITIALIZE command can be called at
anytime to change the Parameters in bytes 16-33 of the PIB − even when a
communication session is in progress. The remaining fields, however,
cannot be changed after the INSTALL command is issued. Issue an
UNINSTALL command prior to attempting to change these fields.

BSCLIB

110

Figure 9. PIB Structure

 Byte Field
Offset Description

Records Per Block

ID byte #2 ID byte #1

(Reserved)

Modem Type

(Reserved) (Reserved)

Tail (-1 = FFFFh)

Reader Record Size

Printer Record Size

Punch Record Size

Transmit Block Size

(Reserved)

ID byte #19 ID Byte #20

0

2

18

24

12

14

16

4

6

8

10

20

22

Flags

(Reserved)

Receive Block Size

Bid Retry Limit

No Activity Time-out

Inter-Character Time-out

ENQ Retry Limit

NAK Retry Limit

34

54

28

30

32

26

52

 Programmer’s Guide

 111

Flags:

Bit 0 − Emulation Type:

 0 = 2780
 1 = 3780 (Default)

This flag selects the desired type of BSC protocol to be used when
BSCLIB initiates a session with the remote system by transmitting
first. This selection must match the protocol used by the remote
station. In multi-point environments, select the default.

When receiving first, BSCLIB automatically detects either the
2780 or 3780 protocol and handles the inbound data stream
accordingly. In addition, the proper protocol to use is set until the
end of the session (i.e., the line disconnects). No specific action is
required by your application in this case.

Bit 1 − Station Type:

For point-to-point operation:
 0= Secondary
 1= Primary
For multi-point operation:
 0= Tributary
 1 = Control

When configured for point-to-point operation, this flag is used to
determine whether BSCLIB or the remote station yields first in a
contention situation for control of the line. The Primary station
bids for the line once a second while a Secondary station bids once
every three seconds − this difference prevents continuous bid
collisions.

When configured for multi-point operation, this flag defines
whether the BSCLIB application is to be the Control or Tributary
station.

Bit 2 − Line Type:
 0 = Leased
 1 = Switched (Default)

When Line Type = 1, the connection to the remote station is
through a dial-up (switched) line, otherwise it is through a leased
(or direct) connection. If a switched line is selected in a point-to-
point environment, BSCLIB will recognize and send DLE-EOT
disconnect sequences when a communication session is terminated.
This option is ignored in multi-point mode.

BSCLIB

112

Bit 3 − Terminal ID:
 0 = No (Default)
 1 = Yes

If Terminal ID = 1, BSCLIB includes a Terminal ID string in the
first Line Bid or positive bid acknowledgment of a communication
session. A Terminal ID may consist of up to 20 characters and is
defined elsewhere in the PIB. This option is ignored in multi-point
mode.

Bit 4 − (Reserved)

Bit 5 − Full-Duplex:
 0 = No (Default)
 1 = Yes

If Full Duplex = 1, BSCLIB operates in full-duplex, or 4-wire,
mode. This is also known as “constant carrier” mode. Appropriate
hardware and any hardware jumper settings must be present for
this mode to operate. The significant difference between half-
duplex (2-wire or “switched carrier” mode) and full-duplex (4-
wire) is BSCLIB doesn't wait for the CTS modem signal prior to
transmitting − this effectively eliminates line turn-around delays
and thus increasing data throughput.

Bit 6 − (Reserved)

Bit 7 − Auto Read Enable:
 0 = No (Default)
 1 = Yes

If Auto Read Enable = 1 and point-to-point mode is configured,
BSCLIB automatically issues a READ command at times after the
communications line has been opened but the application program
does not have a read or write in progress. The sole purpose of this
is to detect a DLE-EOT disconnect sequence that may arrive
unexpectedly. This special read is automatically killed when the
application program issues a READ, WRITE, or CLOSE
command. If a DLE-EOT is detected while the automatic read is
active, your program will be notified on the next READ, WRITE,
CLOSE, or STATUS command. This option is ignored in multi-
point mode.

Bit 8 − Enable ASCII Data Link Control (CRC-16):

 0 = No (Default)
 1 = Yes

 Programmer’s Guide

 113

If Enable ASCII DLC = 1, BSCLIB configures itself for ASCII
Data Link Control (DLC) operation using CRC-16 block check
characters. In this mode all BSC protocol characters and data bytes
are encoded using the ASCII character set. The default is the
EBCDIC character set with BSCLIB automatically performing the
ASCII↔EBCDIC translation where necessary.

Bit 9 − Use LRC With ASCII Data Link Control:
 0 = No (Default)
 1 = Yes

When Use LRC With ASCII DLC = 1 and Enable ASCII DLC = 1,
BSCLIB sets itself for ASCII Data Link Control operation using an
LRC block check character. This flag is ignored if Enable ASCII
DLC = 0.

LRC is an alternate single character block check character often
used instead of CRC-16 in ASCII data link control environments.

Bit 10 − Enable Multi-Point Mode:
 0 = No (Default)
 1 = Yes

If Enable Multi-Point Mode = 1, BSCLIB configures itself for
multi-point operation. The default is point-to-point operation.

Bit 11 − Parity Control:
 0 = n/a (Default)
 1 = Odd

If Parity Control = 1, BSCLIB uses odd parity when using ASCII
Data Link Control. The default is no parity. This flag is ignored if
Enable ASCII DLC = 0.

Bit 12 − Recognize Select When WRITE Is Pending:
 0 = No (Default)
 1 = Yes

When BSCLIB is operating as a tributary station in a multi-point
environment, setting Recognize Select = 1 causes BSCLIB to
terminate a pending WRITE by returning result code 111 to your
application whenever a select sequence is detected that matches a
BSCLIB address. Your application may then issue a READ to
respond to the next select sequence, or ignore the select by
reissuing the WRITE and awaiting the next poll sequence.

Bit 14 − Partial Update:
 0 = No (Default)
 1 = Yes

BSCLIB

114

If Partial Update = 1 on an INITIALIZE command only bytes 16
through 33 of the PIB are updated. All other fields in the PIB are
ignored.

Modem Type:
Default: 1

When configured to use an external mo dem, this value tells
BSCLIB the type of modem attached to the hardware adapter. The
permitted values are:

 1 − Motorola/UDS models 201C/D, 208B/D, 2140, or 2860
 2 − manual dial, other, or none
 3 − Racal-Vadic model 4850PA
 5 − AT-command set (e.g., Hayes Optima)
 8 − V.25bis compatible modem

Check the readme.1st file for Windows or READ.ME.FIRST file for Unix
on your distribution media for other modem types that may be supported in
the latest release of BSCLIB.

Transmit Block Size:

Default: 512

Range: 10 - 4096

This is the maximum size in bytes of the buffer into which
BSCLIB copies data records before sending the buffer as a data
block. Typically this size should be 512 fo r 3780 emulation and
400 for 2780 emulation. This size should be set to exactly match
the receive block size of the remote station.

Receive Block Size:
Default: 512

Range: 10 - 4096

This is the maximum size in bytes of a data block that BSCLIB
will receive from the remote station. Typically this size should be
512 for 3780 emulation and 400 for 2780 emulation. This size
should be at least as large as the transmit block size of the remote
station.

Reader Record Size :
Default: 80

Range: 1 - Transmit Block Size

 Programmer’s Guide

 115

This is the maximum size in bytes of each data record that will be
copied into BSCLIB's buffer for transmission. In non-transparent
operation, this size need only be set to accommodate the largest
record that may be sent; however, in transparent operation, this size
becomes important as both the transmitting and receiving stations
must agree to the record size to facilitate the correct deblocking of
received records.

Also, if 2780 emulation is selected and space truncation is not
selected, BSCLIB pads all outbound records with spaces so all
records are of this size.

Printer Record Size:

Default: 132

Range: 1 - Receive Block Size

This is the maximum size in bytes of each printer data record
passed to your application from data blocks received from the
remote station. In non-transparent operation when the inbound
data stream is formatted with record separators, set the printer
record size equal to the receive block size to insure correct printer
data formatting. In transparent operation, this size must agree with
the transmitting station's reader record size to facilitate the correct
deblocking of received records.

Punch Record Size:
Default: 80

Range: 1 - Receive Block Size

This is the maximum size in bytes of each punch data record
passed to your application from data blocks received from the
remote station destined for the punch. In non-transparent operation
when the inbound data stream is formatted with record separators,
set the punch record size equal to the receive block size to insure
correct punch data formatting. In transparent operation, this size
must agree with the transmitting station's reader record size to
facilitate the correct deblocking of received records.

Records Per Block:
Default: 0

This allows automatic transmission of a data block upon buffering
the specified number of records. A value of 0 instructs BSCLIB to
transmit when a buffer is full. Depending on the configuration of

BSCLIB

116

the remote station, rules of 2780 emulation may restrict the number
of records per block to a maximum of two or seven.

No Activity Time-out:
Default: 0

This value, in tenths of seconds, specifies the maximum period of
time that may pass without any communications line activity
before BSCLIB returns a time-out error. A value of 0 instructs
BSCLIB to disable this time -out.

Inter-Character Time-out:
Default: 180

This value, in tenths of seconds, specifies the maximum period of
time BSCLIB should allow for a single character to be transmitted
or received before reporting an error. A value of 0 instructs
BSCLIB not to time-out. A non-zero value should always be
passed in this field. The occurrence of an inter-character time-out
generally indicates a hardware failure.

Bid Retry Limit :

Default : 15

In point-to-point operation, this value represents the number of line
bids that BSCLIB will transmit in an attempt to start a WRITE
command. A value of 0 instructs BSCLIB to send Line Bids
indefinitely.

In multi-point control station operation, this value is used to
control the number of polls or selects sent that are either not
responded to or receive an EOT or NAK response. For example, if
you wish to send a single poll set this value equal to 1. If the
tributary station does not reply with data, result code 102 is
returned to your application. The BCB time-out value is used to
control the period of time BSCLIB waits for a response to the poll
or select.

If this value is greater than one and the tributary station is
responding negatively (EOTs or NAKs are being sent), BSCLIB
will retransmit the corresponding polls or selects in as rapid
succession as possible − your BSCLIB application does not have
control over the time interval. If a precise poll or select interval is
required, you should set the “bid retry count” to 1 and perform the
necessary timing in the application.

 Programmer’s Guide

 117

ENQ Retry Limit:
Default: 6

This value represents the number of ENQs that BSCLIB will
transmit in an attempt to solicit a response after sending a data
block or while waiting for an ACK after a WACK was received
from the remote station during a WRITE command. A value of 0
instructs BSCLIB to send ENQs indefinitely.

NAK Retry Limit :

Default: 6

This value represents the number of times BSCLIB will retransmit
a data block to which the remote station has responded with a
NAK. A value of 0 instructs BSCLIB to retransmit indefinitely.

Terminal ID:
The Terminal ID may be required by some remote stations and is a
string of characters up to 20 bytes long. If the desired string is less
than 20 characters, a byte containing a value of 0 must follow the
last character in the string. Additionally, the length of the ID
(excluding the trailing 0 byte) must be passed in the Buffer Size
field of the BCB on an INITIALIZE command. The Terminal ID
and Buffer Size fields are only used when Flags Bit 3 is set to 1.
This option is ignored in multi-point mode.

Tail:
This field must be set to -1. BSCLIB uses this field to validate the
size of the PIB.

BSCLIB

118

Appendix A. BSCLIB Return Codes

The following is a list of the return codes returned in Byte 1 of the BSC
Control Block (BCB) or as a return code from a BSCAWL function. Note
that some of these codes are produced internally within BSCLIB and may
not appear to your program.

Base return codes:

255 Requested I/O command in progress
0 Command completed successfully
1 Duplicate driver installation
2 No hardware found
3 Invalid modem I/O port
4 Invalid modem hardware interrupt
5 BSC driver not installed
6 Invalid opcode
7 Port not open
8 Port is open (on uninstall)
9 Port not installed
10 Specified I/O not in progress (on kill I/O)
11 Command time-out
12 I/O aborted
13 Read/write already in progress
14 Port owned by another process
19 Invalid hardware type; port not defined in Registry
20 Already open
21 Open in progress
22 Cannot load protocol handler process
24 Invalid port number
25 CTS modem signal lost
26 DSR modem signal lost
27 Zero read/write count specified
28 Invalid external modem type
35 Shared memory alignment error; possible version mismatch
36 Receive character(s) lost
37 Receive FIFO overflow
38 Shared memory error
40 Operation not permitted
41 Receive character(s) lost

 Programmer’s Guide

 119

BSCAWL return codes:

80 Select address list empty
81 Select address list full
82 Select address not found in list
83 Duplicate address found in list
89 Buffer allocation error
90 Read initiated (non-fatal notification)
91 File read error
92 Currently installed
93 Cannot create mutex
94 File is empty (on BSCSendFile)
95 File open error
96 Invalid parameter found
97 Context (hBC) not defined
98 Fatal internal mutex error
99 Fatal internal error

Return codes from BSC protocol handler:

100 Port not open
101 Transmit initiated but no buffer ready to send
102 Bid retry error (point-to-point mode)
 Poll/Select response retry error (multi-point mode)
103 DLE-EOT disconnect sequence received
104 No activity time-out occurred
105 RVI received
106 ENQ retry error
107 NAK retry error
 Received NAK response(s) to select (multi-point mode)
108 Received forward abort / transmitter error
109 Abnormal receive termination
110 No buffer ready on conversational reply
111 Received a conversational reply (point-to-point mode)
 WRITE aborted due to received select (multi-point mode)
112 Received EOT instead of ACK (point-to-point mode)
 Received EOT response(s) to poll (multi-point mode)
113 Transmission complete
114 DLE-EOT transmitted
115 Receive successfully aborted
116 Receive completed successfully
117 Received SYN as data in normal text mode

BSCLIB

120

118 Receive buffer overflow
119 Unable to send line bid
120 Read for first line bid timed out
121 Transmit successfully aborted
122 Printer selected but is disabled
123 Punch selected but is disabled
124 Received ENQ response to transmitted line bid
125 Too many consecutive WACKs transmitted
126 Receive FIFO underrun
127 Too many consecutive TTDs transmitted
128 EOT transmitted
129 Read enable error
130 No free buffer available when line bid received
131 Abort cancelled due to pending receive data
132 Send conversational reply now
150 BSCLIB reentered / memory model mismatch
160 Could not start BSC Process (DCP)
161 Could not end BSC Process (DCP)
162 BSC Process already active for port (DCP)
163 BSC Process launch timed out (DCP)
164 BSC Process already terminated (DCP)
165 Bad port on BSC Process launch (DCP)
166 Could not start BSC Process (DCP)
170 Failed to load abscdrvr AutoSync 2 process

Return codes from Auto-Dialer routines:

180 Ring detected
181 Busy signal detected
182 Dial tone detected
183 No dial or answer back tone detected
184 Answer back tone detected
185 Modem command error
186 Dialer time -out
187 Dial command aborted
188 Dial command complete
189 Modem command not supported
190 Unknown modem error
191 Cannot enable auto-answer

 Programmer’s Guide

 121

Return codes from Record Manager layer:

200 Duplicate open call
201 Open in progress
202 Open previously completed
203 Read in progress
204 Write in progress
205 Invalid subopcode
206 Write not in progress
207 No transmit buffers available; retry WRITE after short delay
208 Transmit buffer overflow
209 Reader record overflow
211 Read not in progress
213 Abort in progress
214 No I/O in progress on abort or status call
215 I/O in progress
216 Transmit aborted
217 Receive aborted
218 Invalid BCB structure
219 Some parameters ignored because driver installed (warning)
220 Trace already enabled
221 Trace buffer too small
222 Trace not enabled
223 Trace buffer empty
224 Trace buffer too large
225 emubsc daemon process fails to respond
226 Unable to locate emubsc shared memory
227 Unable to detach shared memory
228 Failed to kill I/O on forced close call
229 Invalid serial number found

Return codes from Configuration routines:

230 Invalid PIB structure
231 Invalid configuration flags
234 Invalid transmit buffer size
235 Invalid receive buffer size
236 Reader size cannot exceed transmit buffer size
237 Printer size cannot exceed receive buffer size
238 Punch size cannot exceed receive buffer size
240 Invalid PIB structure

BSCLIB

122

Return codes from Translation table patching routines:

251 Translate table space too small

 Programmer’s Guide

 123

Appendix B. BSCLIB Link State Codes

The state codes shown below reflect the internal state of BSCLIB. The code
is returned in Byte 3 of the BCB at the conclusion of each function call and
in the first field of Statistics Information Block (SPB) of the Read Statistics
function of a STATISTICS command. Since your application program is
shielded from this level of detail of the BSC communications link, these
state codes are returned for informational and diagnostic purposes only, and
should not be used to determine program function.

 State State State
 Name Code Description

 BIDSENT 0 Waiting for bid response
 BIDRESP1 1 Read first char after line bid
 BIDRESP2 2 Read 2nd char after line bid
 TXIDRESP 3 Accept terminal ID in bid reply
 TTDRPLY 4 Here after TTD is sent
 TTDRESP 5 Read for 1st byte of TTD reply
 TTDRESP2 6 Read for 2nd byte of TTD reply
 XMTDEOT 7 Here after EOT is sent
 BUFRXMTD 8 Here after comm buffer is sent
 BLKRESP1 9 Read 1st block response
 BLKRESP2 10 Read 2nd block response
 ENQRPLY 11 Read for delay 2780 ENQ reply
 WAITBID 14 Read for line bid
 DLERESP2 15 Possibly received a DLE-EOT
 RXIDRESP 16 Accept terminal ID with bid
 RCVBLK 17 Just sent ACK/0, wait for blk
 XMTACK 18 Ready to xmt ACK/0 or ACK/1
 WACKRPLY 19 Here after WACK is sent
 WACKRESP 20 Read for WACK reply
 RCV1ST 21 Read for 1st char in data block
 DLERCVD 22 Read a DLE as 1st char of block
 RCVTEXT 23 Receiving data bytes
 WACKDLE 24 Read a DLE as WACK response
 WAITCRC 25 Waiting to test received CRC
 RXIDL 27 Common receive exit routine
 XMTDISC 28 Here after sent DLE EOT
 WAITDISC 29 Reading for DLE of DLE EOT
 WAITDSC2 30 Reading for EOT of DLE EOT
 OPENCOMP 31 Non-blocking open has completed
 DIALCOMP 32 Command written to dialer
 DIALRESP 33 Awaiting reply from dialer

BSCLIB

124

Appendix C. Statistics Parameter Block (SPB)

The values in the Statistics Information Block (SPB) structure shown below
are returned by the Read Statistics function of the STATISTICS command.
All fields, except for the BSCLIB Link State, are 16-bit integer counts of
the number of occurrences of the indicated event.

The values in the SPB have different meanings depending on the mode in
which BSCLIB is configured. See Figures 11, 12, and 13.

 Programmer’s Guide

 125

Figure 10. SPB Structure for Point-to-Point Mode

 Byte Field
Offset Description

Blocks NAK’ed

WACKs Sent

Unknown Responses

Bids Sent

Bids NAK’ed

Tail (-1 = FFFFh)

RVIs Received

WACKs Received

Forward Aborts Sent

Bids ACK’ed

NAKs Sent

0

2

18

24

12

14

16

4

6

8

10

20

22

BSCLIB Link State

Bids Ignored

Bids WACK’ed

Unknown Data Received

Blocks Sent

Records Sent

Bids Received

Bids ACK’ed

34

40

28

30

32

26

38

TTDs Sent

Blocks Received

Records Received

36

42

BSCLIB

126

Figure 11. SPB Structure for Multi-Point Mode (Control Station)

 Byte Field
Offset Description

Blocks NAK’ed

WACKs Sent

Unknown Responses

Selects Sent

Selects NAK’ed

Tail (-1 = FFFFh)

RVIs Received

WACKs Received

Forward Aborts Sent

Selects ACK’ed

NAKs Sent

0

2

18

24

12

14

16

4

6

8

10

20

22

BSCLIB Link State

Selects Ignored

Selects WACK’ed

Unknown Data Received

Blocks Sent

Records Sent

Polls Sent

n/a

34

40

28

30

32

26

38

TTDs Sent

Blocks Received

Records Received

36

42

 Programmer’s Guide

 127

Figure 12. SPB Structure for Multi-Point Mode (Tributary Station)

 Byte Field
Offset Description

Blocks NAK’ed

WACKs Sent

Unknown Responses

Polls Received

n/a

Tail (-1 = FFFFh)

RVIs Received

WACKs Received

Forward Aborts Sent

n/a

NAKs Sent

0

2

18

24

12

14

16

4

6

8

10

20

22

BSCLIB Link State

n/a

n/a

Unknown Data Received

Blocks Sent

Records Sent

Selects Received

Selects ACK’ed

34

40

28

30

32

26

38

TTDs Sent

Blocks Received

Records Recieved

36

42

BSCLIB

128

BSCLIB Link State:
See Appendix B for Link State values and descriptions.

Bids Sent:
Selects Sent:
Polls Received:

In point-to-point mode, this is the number of Line Bids transmitted
requesting control of the line and permission to send data to the
remote station.

In multi-point control station mode, this is the number of select
sequences transmitted requesting permission to send data to the
remote tributary station.

In multi-point tributary mode, this is the number of times a poll
sequence has been received requesting transmission of data to the
remote control station.

Bids NAK’ed:
Selects NAK’ed:

In point-to-point mode, this is the number of Line Bids sent which
the remote station responded to with a NAK, denying permission
to send data.

In multi-point control mode, this is the number of times the remote
tributary station responded with a NAK, denying permission to
send data.

Bids ACK’ed:

Selects ACK’ed:
In point-to-point mode, this is the number of Line Bids sent which
the remote station responded to with a ACK, giving permission to
send data.

In multi-point control mode, this is the number of select sequences
sent which the remote station responded to with a ACK, giving
permission to send data.

Bids WACK’ed:
Selects WACK’ed:

In point-to-point mode, this is the number of Line Bids sent to
which the remote station responded with a WACK, denying
permission to send data.

 Programmer’s Guide

 129

In multi-point control mode, this is the number of select sequences
sent to which the remote station responded with a WACK, denying
permission to send data.

Bids Ignored:
Selects Ignored:

In point-to-point mode, this is the number of Line Bids sent to
which no response was received from the remote station, possibly
indicating that the remote station has abnormally ended the
communications session.

In multi-point control mode, this is the number of select sequences
sent to which no response was received from the remote station,
possibly indicating that the remote station has abnormally ended
the communications session.

Unknown Responses:

The number of unrecognized responses received from the remote
station. This may indicate a poor quality communications link or
that the remote station is using an incompatible protocol.

TTDs Sent:
The number of TTDs sent indicating that there may have been long
delays between WRITE commands.

RVIs Received:
The number of RVIs received from the remote station, requesting
that the application end the WRITE command and issue a READ
to receive data.

WACKs Received:
The number of WACKs received in response to a data block or
ENQ. Reception of a WACK instructs BSCLIB to send ENQs
until the remote station responds with an ACK at which time
BSCLIB may send another data block.

Forward Aborts:
The number or Forward Aborts transmitted, instructing the remote
station that BSCLIB will send no more data and to disregard the
data transmitted since the last Line Bid.

Blocks NAK’ed:
The number of data blocks transmitted to which the remote station
responded with a NAK, requiring retransmission of the block. If

BSCLIB

130

this value is large in relation to the number of blocks sent, the
communications line or equipment may be corrupting the data link.

Blocks Sent:
The number of data blocks transmitted.

Records Sent:

The number data records buffered and transmitted in data blocks.

Unknown Data Received:
The number of unrecognized transmissions and responses received
from the remote station. This may indicate a noisy communication
link or that the remote station is using an incompatible protocol.

Bids Received:

Polls Sent:
Selects Received:

In point-to-point mode, this is the number of Line Bids received
from the remote station, requesting control of the line and
permission to send data.

In multi-point control station mode, this is the number of poll
sequences transmitted requesting transmission of data from the
remote tributary station.

In multi-point tributary mode, this is the number of times a select
sequence has been received requesting data to sent to the remote
control station.

Bids ACK’ed:

Selects ACK’ed:
In point-to-point mode, this is the number of Line Bids received
from the remote station to which BSCLIB responded with an ACK,
indicating that BSCLIB was ready to receive data.

In multi-point tributary mode, this is the number of select
sequences received from the control station to which BSCLIB
responded with an ACK, indicating that BSCLIB was ready to
receive data.

WACKs Sent:

The number of Line Bids received from the remote station to
which BSCLIB responded with an WACK, indicating that
BSCLIB's data buffers were full and that the remote station should
not send any more data. This may indicate that the application has

 Programmer’s Guide

 131

delayed for long periods of time between READ operations, thus
allowing BSCLIB's data buffers to become full.

Blocks Received:
The number of data blocks received.

NAKs Sent:

The number of data blocks received to which BSCLIB responded
with a NAK, requiring retransmission of the block by the remote
station. The NAK response may be the result of an erroneous CRC
being received or a receive buffer may have overflowed.

Records Received:
The number data records received in data blocks from the remote
station.

 132

Appendix D. KILLBSC – Terminate EMUBSC

This program is used to properly terminate the emubsc daemon. It should
be run at the end of any shell scripts that load a BSCLIB application. You
may also run it directly from the command line to kill the daemon and
remove it from memory. The optional command line options for killbsc
are described below.

-f Forced kill

The -f switch may be used to force the termination of emubsc when it is
not in the idle state.

-b board Board number [1-6] (SmartSync/DCP only)

The -b switch specifies which SmartSync/DCP associated with the BSC
process to be killed. You must indicate the board number, 1 through 6, as
appropriate. The board number corresponds to the order in which they were
configured. If omitted, the default is board 1.

-p port Port number [1-8]

The -p switch specifies the port associated with the BSC process to be
killed. If omitted, the default is port 1.

-s Silent mode

The -s switch suppresses all output to the terminal with the exception of
error messages.

-i id Alternate shared memory ID (Unix only)

The -i switch must be used to pass the alternate shared memory identifier if
one was used when emubsc was loaded.

 Programmer’s Guide

 133

Appendix E. EMUBSC – BSC Protocol Handler Process

The emubsc process is the background BSC protocol handler for
applications using AutoSync or SyncPCI communications adapters. It is not
applicable to SmartSync/DCP installations. The process is automatically
started by the BSCLIB INSTALL function. On Unix, the program file is
expected to be found in BSCLIB install directory.

Under certain conditions Serengeti Technical Support may instruct you to
start emubsc manually using the following command or by simply
clicking on the program icon in Windows:

 emubsc -d -v

The emubsc command line options are described below:

-p port Port number [1-8]

The -p switch specifies the port associated with the BSC process to be
killed. If omitted, the default is port 1.

-d Debug mode

The -d switch activates the debug option which writes internal debug
information to a file named "emubsc.1".

-f path Alternate path to abscdrvr executable (Unix only)

The -f switch is used to specify an alternate path to the abscdrvr
executable if it is not in the default /usr/lib/bsclib directory.

-i id Alternate shared memory ID (Unix only)

The -i switch is used to specify an alternate shared memory identifier when
the default value of 311 is used by another process. In such cases, your
application must specify the same shared memory ID specified with the -i
switch.

-m size Maximum size of emubsc.1 file
By default, when emubsc is writing to emubsc.1 the file is not allowed
to grow larger than approximately 100K bytes. The -m switch changes the
maximum size of emubsc.1. For example, -m50 sets the maximum file
size to 50K bytes.

-s Silent mode (Unix only)

134

The -s switch suppresses all output to the terminal with the exception of
error messages. Use this switch if you run your BSCLIB application fro m
the same terminal used to load emubsc .

-t Block response time -out

The -t switch is provided to change the time-out used when waiting for a
reply to a transmitted data block. The BSC protocol defines that this time -
out be three seconds, but the -t switch enables you to change this time-out if
necessary within your environment. For example, -t5 changes the block
response time-out to five seconds.

-v Verbose mode

The -v switch must be used in conjunction with the -d switch to cause debug
messages to be output to the display in addition to the debug file.

 Programmer’s Guide

 135

Appendix F. DCPLOAD – Load Process on DCP

This program is used to initialize each SmartSync/DCP co-processor and
download the amxbsc.bin file. The amxbsc.bin file is expected to be
found in the current subdirectory. The optional command line switches for
dcpload are described below:

-b board Specific board number to load [1 -6]

The -b switch specifies which SmartSync/DCP adapter dcpload is to
access. You must indicate the board number, 1 through 6, as appropriate.
The board number corresponds to the order in which they were configured.
If omitted, dcpload loads all boards found.

-f name Path/File to download

The -f switch specifies the full path name of amxbsc.bin if it is not in the
current subdirectory. For example:

 dcpload -f /MyApp/amxbsc.bin

-v Verbose load (Unix only)

The -v switch causes dcpload to display detailed information during
downloading. Use this switch the first few times you download
amxbsc.bin to become familiar with the process and observe dcpload in
operation.

Unix systems can be configured to automatically initialize SmartSync/DCP
adapters during system startup. Below is an example of how to configure a
Linux system by adding the following commands to the end of the
/etc/rc.d/rc system file. If you are also activating the SmartSync/DCP
device driver in the rc file, make sure that the dcpload command is after
the insmod.

 /sbin/insmod –f /usr/lib/dcplib/driver/xdcpdrvr.o
 /usr/lib/dcplib/dcpload -f /usr/lib/dcplib/amxbsc.bin

136

Appendix G. DCPPEEK − DCP Process Status

This program is used to “peek” at each SmartSync/DCP and verify that the
various processes running in the co-processor are active. This utility is
intended primarily for trouble-shooting purposes, but can be run at any time
to check the status of BSC processes. The optional command line switch
for dcppeek are described below:

-b board Specific board number to peek at [1-6]

The -b switch specifies which SmartSync/DCP dcppeek is to access. If
you indicate the board number specify 1 through 6, as appropriate. The
board number corresponds to the order in which they were configured. If
omitted, dcppeek displays status of all boards found.

On Windows, dcppeek opens a GUI Window. On Unix, results are output
to the current display. The following is an example of output from
dcppeek on Unix after running dcpload:

 SmartSync/DCP Peeker v4.x.x
 Copyright (C) 1993-2002 Serengeti Systems Incorporated.
 ALL RIGHTS RESERVED.

 Total of 1 SmartSync/DCP adapter(s) found:

 Ports Available: 8
 Memory Installed: 1024K
 Board Address: bfff7800
 Window Address: 80104000

 BSC Emulation Downloaded

 BSC Task Monitor Running
 BSC Interrupt Clock Running

 BSC Process #1 Not Running
 BSC Process #2 Not Running
 BSC Process #3 Not Running
 BSC Process #4 Not Running
 BSC Process #5 Not Running
 BSC Process #6 Not Running
 BSC Process #7 Not Running
 BSC Process #8 Not Running

 Programmer’s Guide

 137

The results are repeated for each SmartSync/DCP found unless the -b switch
is used to specify a specific board.

The BSC Processes can have the following states: Not Running, Running in
IDLE State, Running in XMT State, Running in RCV State, and Not
Running in IDLE State (this is an error state).

The BSC Task Monitor and Interrupt Clock should always be ‘Running’
during normal operation. If the BSC Task Monitor or Interrupt Clock is ever
in the ‘Not Running’ state, you can run dcpload to reinitialize the
SmartSync/DCP board. This is also true if one the BSC Processes is hung
in one of the ‘Running’ states (i.e., killbsc is unable to return it to the ‘Not
Running’ state).

138

Appendix H. DCPDUMP − Dump DCP Debug

This program is used to access the onboard memory and registers of
SmartSync/DCP. This utility is strictly for diagnostic purposes and should
only be used under the direction of Serengeti Technical Support.

There are no command line options for this utility program.

 Programmer’s Guide

 139

Appendix I. DCPDEBUG − DCP Debug

This program is used to access debug messages generated by
SmartSync/DCP BSC processes. This utility is used strictly for diagnostic
purposes and should only be used under the direction of Serengeti Technical
Support.

The debug messages obtained by dcpdebug are automatically written to
both the screen and a file. If you’ve configured one SmartSync/DCP, the
default file name is debug.x where x is the port number. If you’ve
configured more than one, the default is debug.xy where x is the port
number and y is the board number. By default the output file is reset when
it reaches 100,000 bytes. This enables dcpdebug to run continuously
without overflowing disk storage. The optional command line switches for
dcpdebug are described below:

-b board Board number to debug [1-6]

The -b switch specifies which SmartSync/DCP dcpdebug is to access.
You must indicate the board number, 1 through 6, as appropriate. The
board number corresponds to the order in which they were configured. If
omitted, dcpdebug defaults to board 1.

-p port Port number to debug [1-8]

The -p switch specifies which of the SmartSync/DCP ports to monitor for
debug messages. You must indicate the port number, 1 through 8, as
appropriate. If omitted, dcpdebug defaults to monitor port 1.

-f name Alternative debug file name (Unix only)

The -f switch specifies a file, other than the default, to record debug
messages.

-a name Append to debug file name (Unix only)

The -a switch appends debug messages to an existing file.

-m size Maximum size of debug file (kilobytes)

The -m switch changes the default maximum output file size. By default
the debug file is reset when it exceeds 100,000 bytes. To change this
default, specify the maximum file size in kilobytes (1,024 bytes).

140

-s Silent mode

The -s switch prevents dcpdebug from echoing debug messages to the
screen.

-l Priority mode (Windows only)

The -l switch causes dcpdebug to run at a higher priority level. If the
message “DEBUG TRACKING MESSAGES LOST” appears on the screen
or in your debug output file when running dcpdebug , first try using silent
mode. If silent mode does not prevent the messages from appearing, use
priority mode. When using priority mode, be sure to run dcpdebug in the
background to lessen the effect on other running processes.

 Programmer’s Guide

 141

Appendix J. DCPTRACE − DCP Trace Dump

This program is used to access the line trace buffers updated by
SmartSync/DCP BSC processes. This utility is strictly for diagnostic
purposes and should only be used under the direction of Serengeti Technical
Support.

In other versions of BSCLIB, reading the trace buffer is done through a
BSCLIB function call. With the SmartSync/DCP dumping of the line trace
information is handled by running dcptrace . Your program is still
responsible for initializing the trace buffer and turning the line trace on.

The trace data retrieved by dcptrace is automatically written to both the
screen and an output file. If you’ve configured one SmartSync/DCP, the
default file name is trace.x where x is the port number. If you’ve
configured more than one, the default is trace.xy where x is the port
number and y is the board number. By default the output file is reset when
it reaches 100,000 bytes. This enables dcptrace to run continuously
without overflowing disk storage. The optional command line switches for
dcptrace are described below:

-b board Board number to trace [1-6]

The -b switch specifies which SmartSync/DCP dcptrace is to access. You
must indicate the board number, 1 through 6, as appropriate. The board
number corresponds to the order in which they were configured. If omitted,
dcptrace defaults to board 1.

-p port Port number to trace [1-8]

The -p switch specifies which of the SmartSync/DCP ports to monitor for
trace data. You must indicate the port number, 1 through 8, as appropriate.
If omitted, dcptrace defaults to monitor port 1.

-f name Alternative trace file name

The -f switch specifies a file, other than the default, to record trace data.

-a name Append to trace file name (Unix only)

The -a switch appends trace data to an existing file.

142

-m size Maximum size of trace file (kilobytes)

The -m switch changes the default maximum output file size. By default
the trace file is reset when it exceeds 100,000 bytes. To change this default,
specify the maximum file size in kilobytes (1,024 bytes).

-s Silent mode

The -s switch prevents dcptrace from echoing trace messages to the
screen. On Windows, this option will decrease CPU utilization of the
program. Also on Windows, this option can be enabled by unchecking the
“Echo to Screen” checkbox under the “Options” menu.

 Programmer’s Guide

 143

Appendix K. XRESET – Reset SyncPCI Device Driver

This utility only applies to applications on Unix using the SyncPCI adapter.
When an unexpected termination of emubsc leaves the XBSC Device
Driver in an unresponsive state, use the xreset utility to close all devices
associated with BSCLIB and reset the internal line trace buffer. This usually
restores the XBSC Device Drivers to a working state.

WARNING: Running xreset will disconnect all active BSCLIB sessions.

The optional command line switches for xreset are described below:

-f Forced reset

The -f switch forces a driver reset when xreset indicates the driver is in use.

If you encounter XBSC Device Driver related errors when loading your
BSCLIB application, run xreset and then reload you application. If the
problem persists, reboot your system.

144

INDEX

2

2780 .. 5

A

ABORT.. 24
ABORT I/O command...54, 88, 92, 93
abort read... 71, 80, 92
abort, forward ...84, 91
ACK ... 84, 92, 117
ACK control... 75
add selection address.. 83
AIX.. 6
API.. 18
Application Program Interface.. 18
ASCII data link control.. 112, 113
AT modem commands..................................55, 101, 103, 104, 105
auto-answer ..57, 70
AutoSync.. 4, 9
AWLTEST.. 19

B

BAPI... 22, 50, 60
BCB 50, 52, 54, 72, 73, 77, 78, 81, 84, 88, 89, 90, 95, 102, 103, 104,

105, 107, 117
BCB, auxiliary flags.. 56
BCB, flags.. 56
BCB, structure of.. 53
bid retry limit ... 116
binary I/O..16, 73, 78, 85
block acknowledgment control..56, 75
block response time-out.. 101, 102
block size, receive.. 114, 115
block size, transmit ... 114
block, ETB ..84, 88
block, ETX .. 84, 89, 90
Blocking calls... 58
BPM.. 17
BSC control block... 50

 Programmer’s Guide

 145

BSC protocol..16, 111, 113
BSC protocol manager.. 17
BSCAbort... 25
BSCAnbswer .. 26
BSCAWL.. 18, 19, 22, 25, 47
BSCClearReceivedTerminalID.. 26
BSCClearStatistics ... 26
BSCClose... 27
BSCCloseHandle ... 37
BSCConnect... 27
BSCCreateHandle .. 27
BSCDial... 28
BSCGetATAnswerString.. 28
BSCGetATInitString ... 28
BSCGetHardwareType.. 29
BSCGetNumDCPBoards.. 29
BSCGetParms.. 29
BSCGetStatistics.. 29
BSCGetTranslationTable ... 29
BSCHardwareCommand.. 30
BSCInitialize... 30
BSCInstall... 30
BSCIsInstalled... 31
BSCIsOpen.. 31
BSCIssueAPICall .. 31
BSCLIB API.. 18, 50, 60
BSCLIB Control Block ...52, 54
BSCLIB features... 2
BSCLoadSettings..31, 47
BSCRead... 32
BSCReadAddSelectAddressToList.. 32
BSCReadGetFlags... 32
BSCReadGetReceivedTerminalID .. 33
BSCReadGetSelectAddressList... 33
BSCReadGetSelectedAddress... 34
BSCReadGetTimeout... 33
BSCReadInitiateRVI.. 34
BSCReadRemoveSelectAddressFrom 34
BSCReadSetPollInterval.. 35

146

BSCReadStoreMultiPointAddress .. 35
BSCReadStoreSelectAddressList .. 35
BSCReadToETX.. 36
BSCReadUnidirectional... 36
BSCReceiveFile... 37
BSCSaveSettings...37, 47
BSCSendFile ... 38
BSCSetBlockRespTimeout ... 38
BSCSetDTR... 38
BSCSetMaxBaudRate.. 39
BSCSetTerminalID.. 39
BSCStatus ... 39
BSCStoreATAnswerString ... 39
BSCStoreATInitString ... 40
BSCStoreStatistics ... 40
BSCStoreTranslationTable .. 40
BSCTrace.. 41
BSCUninstall... 45
BSCWrite .. 41
BSCWriteETB... 41
BSCWriteETX... 42
BSCWriteETXEOT.. 43
BSCWriteGetFlags .. 43
BSCWriteGetTimeout .. 43
BSCWriteSendEOT ... 44
BSCWriteSendForwardAbort... 44
BSCWriteSendLineTickle .. 44
BSCWriteSetSelectInterval... 44
BSCWriteStoreMultiPointAddress.. 45
buffer overflow... 78

C

Callback Functions... 45
CHECK I/O STATUS command.............. 54, 69, 72, 80, 91, 93, 112
CLOSE.. 24
CLOSE command.. 55, 98, 112
CLOSE, forced... 99
CLOSE, standard...98, 99
Configuring BSCLIB... 109

 Programmer’s Guide

 147

constant carrier mode ... 112
control station ... 82, 92, 111
conversational reply ... 3, 54, 57, 81, 90
CR/LF... 16, 73, 76
CRC-16.. 113
ctest... 51
CTS ... 112

D

daemon .. 6, 9
data set ready... 100
data terminal ready ...55, 69, 99, 101, 102
device driver .. 65
device drivers... 17
dial modem .. 67
disconnect.. 72
disconnect sequence... 98, 99, 112
DLE-EOT..56, 72, 98, 111, 112
DLE-EOT, suppress.. 99
DLE-ETB... 85
DLE-ETX... 85
DLE-STX ... 85
DSR...57, 69, 70, 100
DTR... 55, 66, 69, 98, 99, 100, 101, 102

E

EBCDIC New Line.. 76
EBCDIC transparency ...16, 56
emubsc.. 66
emulation type.. 111
end-of-block character.. 16
ENQ retry limit... 117
EOT..54, 72, 80, 84, 90, 92
Esc / .. 74
Esc A... 74
Esc M .. 74
Esc S.. 74
Esc T... 74
ETB...16, 54, 73, 76, 84, 88, 89, 90
ETX..16, 54, 73, 76, 79, 81, 84, 89, 90, 91

148

F

forward abort..84, 91
full-duplex...63, 112

H

half -duplex..63, 112
hardware adapter type .. 101
HARDWARE command..55, 100
HARDWARE COMMANDS... 25

I

I/O in progress..79, 93
ini File... 47
INITIALIZE.. 22
INITIALIZE command.........................54, 60, 64, 65, 109, 114, 117
initiate I/O .. 67, 69, 73, 85, 88, 91, 93
INSTALL.. 22
INSTALL DRIVER command................................. 54, 65, 100, 109
inter-character time-out.. 116
INTERNAL MODEM command... 55
inter-record separator.. 16, 86, 115
IOCallbackProc ... 45
IRS ... 56, 76, 86
IRS, suppress...76, 87
IUS...56, 76
IUS, suppress... 76

L

line bid.. 72, 80, 84, 92, 112, 116
line tickle ... 92
line trace.. 96
line trace, read buffer ... 97
line type ... 111
line, leased... 111
line, switched ... 111
Link State Codes... 123
Linux ... 6
logical records .. 15, 16, 59
LRC... 113

 Programmer’s Guide

 149

M

manual dial...57, 68
master device control.. 76
modem type ...63, 114
multi-point.. 1, 59, 81, 82, 83, 111, 113
multi-point emulation.. 5
multi-port..4, 12

N

NAK .. 72
NAK retry limit... 117
NAK'd data blocks, accepting .. 74
NL ... 76
no activity time-out..92, 116
Non-Blocking calls ... 58

O

OPEN.. 22
OPEN command..54, 65, 66, 92, 93, 102
open communications...67, 69
OpenCallbackProc ... 46
overflow, buffer.. 78

P

parameter initialization block....................................... 60, 72, 109
physical record I/O..16, 59
PIB.. 60, 72, 109, 114
PIB, flags... 63
PIB, structure of ..62, 110
point-to-point.. 111, 113
Point-to-point... 59
poll/select retry limits ... 116
printer record size ..56, 76, 78, 115
printer, disable ... 75
protocol manager... 17
pulse dial... 68
punch record size..56, 76, 78, 115
punch, disable .. 75
punch, select...78, 86

150

R

READ .. 23
READ command ..54, 56, 59, 71, 92, 112
READ, abort ... 71, 80, 92
READ, simplex.. 54, 56, 80
READ, standard ... 72
READ, uni-directional... 54, 56, 80
ReadCallbackProc.. 46
reader record size.. 114, 115
receive block size... 114, 115
receiving data... 71
record manager.. 15
record size ... 61
record size, printer ...56, 76, 78, 115
record size, punch...56, 76, 78, 115
record size, reader... 114, 115
record truncated... 78
records per block.. 115
remote station............................... 71, 72, 84, 92, 98, 111, 115, 117
remove selection address... 83
Return Codes...57, 118
Reverse Interrupt (RVI)... 80
ring indicator... 69
RVI, initiate...71, 80

S

secondary station.. 111
select recognition, during WRITE.. 113
selection address, storing multiple ..54, 81
send EOT... 92
send ETB block... 88
send ETX block... 89
send ETX block and EOT.. 90
send forward abort ... 91
send line tickle.. 92
sending data ... 71
shared memory ID.. 66
single-port...3, 6, 9
SmartSync/DCP adapter .. 12, 97, 102

 Programmer’s Guide

 151

SOH ... 56, 79, 87
Solaris... 6
space compression...73, 86
SPB ..55, 94, 95, 123, 124
SPB, structure of multi-point control station............................. 126
SPB, structure of multi-point tributary station 127
SPB, structure of point-to-point... 125
station type... 63
STATISTICS... 24
STATISTICS command...55, 94
statistics parameter block..95, 123, 124
statistics, initialize ...94, 95
statistics, read...94, 95
STATUS... 24
store multiple selection addresses .. 82
store multi-point address.. 82, 84, 92
structure member alignment.. 53
STX.. 87
suppress block response.. 74
switched carrier mode... 112
switched line .. 98
SyncPCI... 3, 6

T

temporary text delay ... 17
terminal ID 54, 60, 65, 71, 81, 109, 112, 117
time-out ...61, 69, 70, 73, 78, 85, 88, 100
time-out, block response... 101, 102
time-out, inter-character... 116
time-out, no activity ...92, 116
TRACE .. 24
trace buffer overflow... 97
TRACE command..55, 96
TRACE, initialize.. 96
TRACE, reset... 98
TRACE, start.. 96
TRACE, stop .. 97
translation table ..60, 63
translation, ASCII↔EBCDIC............................ 16, 63, 85, 87, 113

152

translation, disable ..76, 87
translation, EBCDIC↔ASCII....................................15, 63, 73, 76
transmit block size .. 114
transparent data .. 76, 78, 85
trial open ... 70
tributary station... 82, 92, 111
TTD... 17

U

UNINSTALL... 24
UNINSTALL DRIVER command..................................55, 100, 109
UNIX.. 6, 66, 114

V

vertical forms control...16, 74
VFC..16, 73
VFC, decode .. 74
VFC, strip .. 74
VFC, suppress ...73, 76

W

WACK .. 17, 72, 117
wait acknowledgment.. 17
Windows...6, 114
Wrapper Library .. 18
WRITE... 23
WRITE command..................................54, 56, 59, 83, 93, 112, 116
WRITE, standard.. 84
WriteCallbackProc ... 46

X

XBSC device driver..6, 102
XDCP device driver.. 12

 Programmer’s Guide

 153

(Blank Page)

	Table of Contents
	Introduction
	Background
	BSCLIB Features
	BSCLIB Hardware Options

	Application Structure
	Single-Port SyncPCI BSCLIB Applications
	Multi-Port SyncPCI BSCLIB Applications
	Single-Port AutoSync BSCLIB Applications
	Multi-Port SmartSync/DCP BSCLIB Applications
	The "Layers" of BSCLIB

	BSCLIB Programming
	Low-Level BAPI Programming
	Configuring BSCLIB
	Appendices
	Appendix A. BSCLIB Return Codes
	Appendix B. BSCLIB Link State Codes
	Appendix C. Statistics Parameter Block (SPB)
	Appendix D. KILLBSC - Terminate EMUBSC
	Appendix E. EMUBSC - BSC Protocol Handler Process
	Appendix F. DCPLOAD - Load Process on DCP
	Appendix G. DCPPEEK - DCP Process Status
	Appendix H. DCPDUMP - Dump DCP Debug
	Appendix I. DCPDEBUG - DCP Debug
	Appendix J. DCPTRACE - DCP Trace Dump
	Appendix K. XRESET - Reset SyncPCI Device Driver

	Index

